A 9.35-ENOB, 14.8 fJ/conv.-step Fully-Passive Noise-Shaping SAR ADC

Zhijie Chen, Masaya Miyahara, Akira Matsuzawa

Tokyo Institute of Technology
Outline

• Background and motivation
• Conventional Noise shaping technique
• Proposed fully passive noise shaping SAR ADC
• Experimental results
• Conclusion
Background and Motivation

SAR ADC architecture:

- SAR ADC mainly consists of digital circuits
- It can benefit from the technology scaling (like speed)
- Analog components affect the performance
Switch and Capacitor in SAR ADC

Capacitor array affects SAR ADC performance

Switch and Capacitor

- Higher resolution \rightarrow Larger cap \rightarrow Larger settling time
- Larger cap \rightarrow Larger chip size \rightarrow Slower speed
Non-ideal effects further degrade performance.

How to improve the resolution?
Noise shaping technique

Move noise out of band of interest

- Sacrifice speed for resolution
- Noise shaping is based on integrator, usually opamp
Simulation results of non-ideal effects

- Noise shaping reduces non-ideal effects

Comparator noise: $V_n (\sigma(\text{LSB}))$

Settling error (LSB)

DAC mismatch (LSB)

Jitter (ps)

$\text{Fin} = 6.24\text{ MHz}$
Noise shaping effect on capacitance

- Traditional SAR ADC
 \[\text{Thermal noise} = \frac{kT}{C}\]

- Noise shaping SAR ADC
 \[\text{Thermal noise} = (1-Z^{-1}) \frac{kT}{C/OSR}\]

Same SNR, **smaller** capacitor for noise shaping SAR ADC
Outline

• Background and motivation
• Conventional Noise shaping technique
• Proposed fully passive noise shaping SAR ADC
• Experimental results
• Conclusion
Conventional noise shaping technique

- FIR filter introduces extra noise and extra area;
- Opamp: extra power and flicker noise;
- Tech. scaling, difficult to design high performance Opamp

Outline

• Background and motivation
• Conventional Noise shaping technique
• Proposed fully passive noise shaping SAR ADC
• Experimental results
• Conclusion
Traditional architecture

Traditional 1st-order noise shaping architecture

\[Y = X + (1 - Z^{-1})E \]

\[Y(N) = X(N) + X_{\text{SAR,in}}(N-1) - Y(N-1) + E(N) \]
Proposed FPNS-SAR ADC architecture

Proposed noise shaping architecture (FPNS-SAR)

⊕ : Realized by Charge redistribution

\[X_{\text{in}} \]

\[X_{\text{SAR,in}} = X_{\text{in}} - Z^{-1}E \]

Step 1: Get previous residue on top-plate of C-DAC;
Step 2: Feed it back to input.
Residue in SAR ADC

Residue on the top-plate of SAR ADC

After conversion @ N-1, residue \(V_{top}(N-1) = X_{SAR,in}(N-1) - Y(N-1) \)
FPNS-SAR ADC implementation

1. Conversion @ N-1

After conversion, \(V_{\text{top}} = -E(n-1)/2; \)

2. Clear Charge@ \(\Phi_{\text{NS2}} \)

Clear Charge of \(C_3, Q_{C3} = 0; \)
3. Charge share @ Φ_{NS3}

Get half top voltage, $V_{C3} = V_{top} \cdot (n-1)/2$;

4. Sample @ N

Sampling input, $V_{in}(n)$;
5. Conversion@ N

With the help of \(C_2 \) and \(C_3 \):

\[
V_{DAC}(n) = V_{in}(n) - E(n-1) + E(n)
\]

\[
V_{DAC}(Z) = V_{in}(Z) + (1 - Z^{-1})E(Z)
\]

Realize 1st-order NS
Capacitance comparison

Traditional 10b SAR-ADC

Proposed 10b noise shaping architecture (FPNS-SAR)

\[C = 8b \text{ C-DAC} \]

\[C_1 = C_2 = C_3 \]

\[C_1 < C, \text{ hence, proposal saves area} \]
Circuit details

Total Circuit of FPNS-SAR ADC:

Asynchronous logic; 8-bit C-DAC
Different switches; four inputs comparator
Circuit details

Dynamic comparator [4]

Dynamic comparator, save power

Outline

- Background and motivation
- Conventional Noise shaping technique
- Proposed fully passive noise shaping SAR ADC
- Experimental results
- Conclusion
Chip photograph

230.1 µm

53.4 µm

CMOS 65 nm

CLK

LOGIC

COMP

C-DAC
Experimental results

- Realized 1st-order Noise Shaping

Power Spectral Density

SNDR = 58.03 dB
ENOB = 9.35 bits
Fin = 999.5 kHz
OSR = 4
Fs = 50 MHz
BW = 6.25 MHz

Power supply: 0.8-V
Power: 120.7-µW
Experimental results - Comparison

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>SAR</td>
<td>CT-SDM</td>
<td>NS-SAR</td>
<td>FPNS-SAR</td>
</tr>
<tr>
<td>Noise Shaping / OTA</td>
<td>No/No</td>
<td>Yes/Yes</td>
<td>Yes/Yes</td>
<td>Yes/ No</td>
</tr>
<tr>
<td>Technology (nm)</td>
<td>65</td>
<td>130</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Bandwidth (MHz)</td>
<td>0.5</td>
<td>15.6</td>
<td>11</td>
<td>6.25</td>
</tr>
<tr>
<td>Core Area (mm²)</td>
<td>0.0259</td>
<td>0.27</td>
<td>0.0323</td>
<td>0.0123</td>
</tr>
<tr>
<td>Supply (V)</td>
<td>1</td>
<td>1.3</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Power (µW)</td>
<td>1.9</td>
<td>4000</td>
<td>806</td>
<td>120.7</td>
</tr>
<tr>
<td>ENOB (bits)</td>
<td>8.75</td>
<td>9.6</td>
<td>10</td>
<td>9.35</td>
</tr>
<tr>
<td>FoM² (fJ/conv.)</td>
<td>4.42</td>
<td>160</td>
<td>35.8</td>
<td>14.8</td>
</tr>
</tbody>
</table>

Outline

• Background and motivation
• Conventional Noise shaping technique
• Proposed fully passive noise shaping SAR ADC
• Experimental results
• Conclusion
Conclusion

• First work that realizes *Passive* noise shaping SAR, save power;

• Maintain basic architecture and operation of SAR-ADC, inherits advantage of SAR-ADC;

• No Opamp, most are digital circuits, robust to future technology and power supply downscaling;

• Relax the requirement of circuit blocks, save area and save power.
Acknowledgements

This work was partially supported by HUAWEI, Mentor Graphics for the use of the Analog Fast SPICE (AFS) Platform, and VDEC in collaboration with Cadence Design Systems, Inc.