An HCI-Healing 60GHz CMOS Transceiver

Rui Wu, Seitaro Kawai, Yuuki Seo, Kento Kimura, Shinji Sato, Satoshi Kondo, Tomohiro Ueno, Nurul Fajri, Shoutarou Maki, Noriaki Nagashima, Yasuaki Takeuchi, Tatsuya Yamaguchi, Ahmed Musa, Masaya Miyahara, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

© 2015 IEEE
International Solid-State Circuits Conference
Outline

• Motivation
• Hot-Carrier-Injection Issues, Prior Arts and Proposed Solution
• Proposed HCI-Healing 60GHz TRX
 • Detailed circuit implementation
• Measurement and Comparison
• Conclusion
60GHz-Band Capability

Wireless Standards

- LTE
- WiMAX
- PDC
- UMTS
- GSM
- WLAN
- DVB-T
- ISDB-T
- GPS
- Bluetooth
- UWB

9-GHz BW @60-GHz band

Frequency (GHz)

Channels of IEEE 802.11ad standard

- 1
- 2
- 3
- 4

7.04 Gbps/ch in 16QAM

© 2015 IEEE
International Solid-State Circuits Conference

19.5: An HCI-Healing 60-GHz CMOS Transceiver
Hot-Carrier-Injection Issue in CMOS (1/2)

CMOS power amplifier

Drain efficiency: $\eta = \frac{P_{\text{out}}}{P_{\text{DC}}}$

Class-A
$\eta = 50\%$

Large $V_{\text{ds,peak}} = 2V_{\text{DD}}$

HCl damage

Class-A
$\eta = 12.5\%$

Small $V_{\text{ds,peak}} = 1.5V_{\text{DD}}$

Low efficiency
Hot-Carrier-Injection Issue in CMOS (2/2)

Lifetime: the time when $\Delta I_{DS} = 10\%$ @ saturation

Stress cond.
$V_D=2.4\,V$
$V_G=0.8\,V$
1 hour

$V_D=1.2\,V$

HCl damage

© 2015 IEEE
International Solid-State Circuits Conference

19.5: An HCl-Healing 60-GHz CMOS Transceiver

4 of 30
Hot-Carrier-Injection Mechanism

Generated defects: Trapped charges & Interface states

Gate oxide

Silicon

High field

Impact ionization

P-Substrate

Degrade V_t, μ_n, g_m, I_D, and lifetime

Trapped charges & Interface states

[*Y. Leblebici et al., JSSC 1993]
HCl Issue in Advanced CMOS

HCl aging $\propto E_{\text{lateral}} \propto V_{ds}/L_{\text{eff}}$

HCl issues more severe

$V_{ds,\text{peak}}$ for same $V_{ds,\text{peak}}/L_{\text{eff}}$

HCl limited

$V_{ds,\text{peak}} = 1.35V^*$

Nominal V_{DD}^{**}

Voltage (V)

Process node (nm)

$\boxed{[**\text{ITRS2013}]}$

$[\text{*D. Stephens et al., RFIC 2009}]$
HCl Issues for 60-GHz Applications

2.4-GHz power amplifier

2.5 V

Thick oxide

$L=250$ nm (I/O Tr.)

$f_{\text{max}}=40$ GHz

60-GHz power amplifier

1.0 V

Standard

$L=65$ nm (core Tr.)

$f_{\text{max}}=220$ GHz
Summary of Prior HCI Solutions@60GHz

- $V_{DD}=1.2V$
- $P_{1dB}=10$ dBm
- Better lifetime
- Degraded output power, linearity and efficiency

Low V_{DD} or Stack Tr.

- $V_{DD}=0.7V$
- $P_{1dB}=5$ dBm

Low V_{DD}

- Stack Transistor

- $V_{DD}=1.2V$
- $P_{1dB}=6$ dBm

[*[M. Tanomura et al., ISSCC 2008]*]
[**A. Siligaris et al., JSSC 2010]*
Power Combining Techniques

Individual: $\text{PAE} = \frac{P_{\text{out},n} - P_{\text{in},n}}{I_n V_{\text{DD}}}$

Combined: $\text{PAE} = \frac{n \times (P_{\text{out},n} - P_{\text{in},n})}{n \times I_n V_{\text{DD}}}$

- Compensate output power and linearity
- Deteriorated efficiency cannot be improved

[*J. Chen et al., ISSCC 2011*]
Proposed HCl-Healing Technique

Ultimate solution: Physically heal HCl damage

\[V_D = 1.2 \text{ V} \]

HCl damage

HCl healing

How?
Proposed HCl Healing Mechanism (1/2)

Damaged gate oxide

Damage mechanism: trapped electrons

[Y. Leblebici et al., JSSC 1993]
Proposed HCI Healing Mechanism (2/2)

Possible solution: charge ejection
Measured HCl-Healing I_D-V_G Curves

First HCl healing demonstration

<table>
<thead>
<tr>
<th>Condition</th>
<th>V_D</th>
<th>V_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress</td>
<td>2.4V</td>
<td>0.8V</td>
</tr>
<tr>
<td>Heal</td>
<td>2.2V</td>
<td>$V_D=0V$</td>
</tr>
</tbody>
</table>

$$V_D=1.2\text{ V}$$

- **Fresh**
- **Damaged**
- **Healed**

Accelerated Meas. $V_G=V_D=0V$, 1 second
HCI-Healing Function in Transistor

First HCI healing transistor

Floating source* & low drain bias** assisting ejection (memory cells)

Ejection of the trapped electrons

Ejection is assisted by floating source and low drain bias.

© 2015 IEEE
International Solid-State Circuits Conference

[19.5: An HCI-Healing 60-GHz CMOS Transceiver]

[*T. Endoh et al., IEDM 1989]*

[**K. Miyaji et al., JJAP 2012]**
HCl-Healing Transistor Module

Equivalent circuit for 60-GHz operation

Equivalent circuit for HCl healing

© 2015 IEEE
International Solid-State Circuits Conference

19.5: An HCl-Healing 60-GHz CMOS Transceiver
HCl-Healing Power Amplifier (1/3)

Proposed HCl healing block

© 2015 IEEE
International Solid-State Circuits Conference

19.5: An HCl-Healing 60-GHz CMOS Transceiver

16 of 30
HCI-Healing Power Amplifier (2/3)

Deep n-well

VH
High voltage

VH

High Z

HCI healing status

RF_{in}

MIM TL

TL

© 2015 IEEE

International Solid-State Circuits Conference

19.5: An HCI-Healing 60-GHz CMOS Transceiver
HCl-Healing Power Amplifier (3/3)

60GHz operation status

© 2015 IEEE
International Solid-State Circuits Conference

19.5: An HCl-Healing 60-GHz CMOS Transceiver
HCI-Healing TRX Block Diagram

Direct Conversion

20GHz PLL+
60GHz QILO

Integrated HCI-healing function

© 2015 IEEE
International Solid-State Circuits Conference

19.5: An HCI-Healing 60-GHz CMOS Transceiver
Die Micrograph

<table>
<thead>
<tr>
<th>Block</th>
<th>Area (mm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>0.79</td>
</tr>
<tr>
<td>RX</td>
<td>1.01</td>
</tr>
<tr>
<td>PLL</td>
<td>0.27</td>
</tr>
<tr>
<td>Logic</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Measurements

- Transistor TEG
 - DC stress lifetime
 - AC stress lifetime
- Stand-alone PA TEG
 - $P_{\text{in}}-P_{\text{out}}$ with healing
 - AC stress lifetime with healing
- TRX Board
 - EVM versus P_{out} with healing
65 nm NMOSFET DC Stress Lifetime

Lifetime = 63 years
@ $V_{DS}=1.2\, \text{V}$

\[\tau = K \cdot e^{\frac{b}{V_{DS}}} \]

Stress condition

$V_{GS} = 0.8 \, \text{V}$

$V_{DS} = \ldots$

$V_{GS} = 0.8 \, \text{V}$

[*E. Takeda et al., EDL 1983]
65 nm NMOSFET RF Stress Lifetime

Lifetime = 2 hours

Freq. = 100 MHz
P_{out} = 11 \text{ dBm}

\Delta I_{DSat} = A \cdot t^{n*}

Stress condition

\[\begin{align*}
V_{gs} & \uparrow & V_{ds} & \downarrow \\
0.8 \text{ V} & \uparrow & 1.2 \text{ V} & \downarrow \\
1 \text{ V} & \uparrow & 1.2 \text{ V} & \downarrow \\
\end{align*} \]

[*L. Negre et al., JSSC 2012]
Measured $P_{\text{in}} - P_{\text{out}}$ of the PA

DC Stress-AC Meas.

Freq.=60 GHz
$V_{G6}=0.7$ V

Symbols: $P_{1\text{dB}}$

Accelerated Meas.

Fresh
Damaged
Healed
Measured Lifetime of the PA

AC Stress-DC Meas.

- Fresh Tr. Stress $P_{out} = 7$ dBm
- Healed Tr. Stress $P_{out} = 7$ dBm

- Lifetime@10% Fresh Tr.: 1.2 year
- Lifetime@10% Healed Tr.: 81.2 years

ΔI_{D6} (%)

Time (s)

© 2015 IEEE
International Solid-State Circuits Conference

19.5: An HCl-Healing 60-GHz CMOS Transceiver
Measured TX EVM versus P_{out}

- Fresh 9dBm
- Stress cond. 12.5dBm with $V_{DD}=1.5V$ (40hr)
- Damaged 5dBm
- Healed 8dBm

IEEE802.11ad MCS12(16QAM) specification 7Gb/s
60GHz TRX Performance Comparison

<table>
<thead>
<tr>
<th>Ref.</th>
<th>CMOS Process</th>
<th>Data rate (Modulation)</th>
<th>$P_{\text{out}} / \text{each PA}$ (dBm)</th>
<th>TX efficiency $P_{\text{out}} / P_{\text{DC}}$ (%)</th>
<th>HCI healing</th>
<th>Core area (mm²)</th>
<th>Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokyo Tech [1]</td>
<td>65nm</td>
<td>10.56Gb/s (64QAM) 28.16Gb/s (16QAM)</td>
<td>8.5* @TX EVM = -21dB</td>
<td>2.8</td>
<td>NO</td>
<td>3.9</td>
<td>TX: 251mW RX: 220mW</td>
</tr>
<tr>
<td>NEC [2]</td>
<td>90nm</td>
<td>2.6Gb/s (QPSK)</td>
<td>6</td>
<td>3.0 w/o PLL</td>
<td>NO</td>
<td>3.4</td>
<td>TX: 133mW RX: 206mW w/o PLL</td>
</tr>
<tr>
<td>Panasonic [3]</td>
<td>90nm</td>
<td>2.5Gb/s (QPSK)</td>
<td>1.9 @TX EVM = -19.6dB</td>
<td>0.4</td>
<td>NO</td>
<td>5.7</td>
<td>TX: 361mW RX: 260mW</td>
</tr>
<tr>
<td>Broadcom [4]</td>
<td>40nm</td>
<td>4.6Gb/s (16QAM)</td>
<td>-4* @TX EVM = -23dB</td>
<td>0.5</td>
<td>NO</td>
<td>26.3†</td>
<td>TX: 1190mW RX: 960mW 16x16 array</td>
</tr>
<tr>
<td>This work</td>
<td>65nm</td>
<td>7Gb/s (16QAM)</td>
<td>9.3 @TX EVM = -21dB</td>
<td>3.9</td>
<td>YES</td>
<td>2.3</td>
<td>TX: 218mW RX: 188mW</td>
</tr>
</tbody>
</table>

*Estimated from literature †Chip area
Conclusions

– 60-GHz CMOS transceiver with HCI damage healing function by using charge ejection technique.
– 81-year lifetime without sacrificing the output power and efficiency
– The transceiver demonstrates an EVM of -27.9dB and can transmit 7Gb/s in 16QAM within 2.16GHz bandwidth.
Acknowledgement

This work is partially supported by MIC, SCOPE, MEXT, STARC, STAR, and VDEC in collaboration with Cadence Design Systems, Inc., Mentor Graphics, Inc., Synopsys Inc., and Agilent Technologies Japan, Ltd.
References

References

