A 0.048-mm2 3-mW Synthesizable Fractional-\(N\) PLL with a Soft Injection-Locking Technique

Wei Deng, Dongsheng Yang, Aravind Tharayil Narayanan, Kengo Nakata, Teerachot Siriburanon, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan
Outline

• Introduction
• Concept of Soft Injection Locking
• Circuit Implementations
• Measurement Results
• Conclusion
Introduction

• Why High Performance PLL
 – Clock generation/distribution

• Key Specifications for SoC Clocking
 – Small area
 – Low power consumption
 – Low jitter
 – Insensitive over environment variations
 – Scalable with technology advancement
All-digital PLLs

- TDC-based architecture

- Taking advantages of digital circuits
- Compact chip area
- Cannot fully utilize digital design flow
 - Layout uncertainty caused by Auto Place & Route degrades TDC and DCO linearity.
Injection Locking Technique

Free-running VCO

Injection locked

Offset Frequency

Phase noise

Injection locked

Free-running

$\frac{\sqrt{6/(N(N-1))}}{2\pi} \cdot f_{\text{ref}}$

[N.D. Dalt, TCAS II 2014]
Phase Noise Comparison

Free-running oscillator

Freq_{ref} = 100MHz
Freq_{DCO} = 1GHz
FOM_{DCO} = -153 dB
(-90dBc/Hz at 1MHz, 0.5mW)

Jitter_{TDC-PLL} = 6.4ps
Jitter_{IL-PLL} = 1.5ps
Injection Method

• Pulse Injection [B. Helal, et al., JSSC 2009]

• Multiplying DLL [S. Ye, et al., JSSC 2002]

• Edge Injection [W. Deng, et al., ISSCC 2014]
Integer-\(N\) Operation

e.g. \(N=3\)

Reference

VCO

\[\text{e.g. } N=3 \]
Sub-Integer-\(N\) Operation

\[
\text{Reference} \xrightarrow{\text{D}} \text{P}_0 \xrightarrow{\text{D}} \text{P}_1 \xrightarrow{\text{D}} \text{P}_2 \xrightarrow{\text{...}} \text{D} \\
\]

\[\text{e.g. } N=3+(1/M)\]

Reference

P_0

VCO

P_1

P_2

\[
\ldots
\]

[P. Park, et al., ISSCC 2012]
Phase Domain (Integer-N)

\[\phi_{PLL} \]

\[f_{PLL} = N \cdot f_{ref} \]

\[T_{ref} \]

\[2 \cdot T_{ref} \]

\[3 \cdot T_{ref} \]

\[4 \cdot T_{ref} \]

\[5 \cdot T_{ref} \]

P0 → P0...

© 2015 IEEE
International Solid-State Circuits Conference

14.1: A 0.048-mm² 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique
Phase Domain (Sub-Integer-N)

\[f_{PLL} = \left(\frac{N+1}{M} \right) \cdot f_{ref} \]

P0 \rightarrow P1 \rightarrow P2 \rightarrow P3 \rightarrow ... \rightarrow P0 \rightarrow P1 ...
Phase Domain (Fractional-N)

\[
f_{PLL} = \left(\frac{N+0.5}{M} \right) \cdot f_{ref}
\]

\[
\phi_{PLL} = \left(\frac{4N+2}{M} \right) \cdot 2\pi
\]

\[
\phi_{PLL} = \left(\frac{3N+1}{M} \right) \cdot 2\pi
\]

\[
\phi_{PLL} = \left(\frac{2N+1}{M} \right) \cdot 2\pi
\]

\[
\phi_{PLL} = N \cdot 2\pi
\]

\[
T_{ref} \rightarrow 2 \cdot T_{ref} \rightarrow 3 \cdot T_{ref} \rightarrow 4 \cdot T_{ref} \rightarrow 5 \cdot T_{ref}
\]

P0 → P0 → P1 → P1 → P2 → P2 → P3 ...

© 2015 IEEE
International Solid-State Circuits Conference
14.1: A 0.048-mm² 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique
Time Domain (Fractional-N)

- Spur is caused by “hard” switching
Proposed Soft Injection

Reference → Soft Injection → Injection Signal

Reference

Soft Injection signal

Locked
"Hard" vs "Soft" Injection

Injection at ϕ_0 Injection at ϕ_{10}

Reference

ϕ_{10} w/o inj

ϕ_{10} w/ inj

Conventional "hard" injection

Soft injection

ϕ_{10} w/o inj

ϕ_{10} w/ inj

Proposed "soft" injection
Injection Strength

• Soft injection signal level determines injection strength

Soft Injection Signal

• Stronger injection strength leads to larger phase shift
Fractional-N Operation (Hard)

- Selected injection phase
- Available injection phase

\[f_{PLL} = (N + 1.5/28) \cdot f_{ref} \]

\[f_{PLL} = (3N + 7/28) \cdot 2\pi \]
\[f_{PLL} = (3N + 6/28) \cdot 2\pi \]
\[f_{PLL} = (3N + 5/28) \cdot 2\pi \]
\[f_{PLL} = (3N + 4.5/28) \cdot 2\pi \]
\[f_{PLL} = (3N + 3/28) \cdot 2\pi \]
\[f_{PLL} = (3N + 2/28) \cdot 2\pi \]
A 0.048-mm² 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique

Fractional-N Operation (Soft)

- Selected injection phase
- Available injection phase

\[f_{PLL} = \left(N + \frac{1.5}{28} \right) \cdot f_{ref} \]

\[\phi_{PLL} = \left(3N + \frac{7}{28} \right) \cdot 2\pi \]
\[\left(3N + \frac{6}{28} \right) \cdot 2\pi \]
\[\left(3N + \frac{5}{28} \right) \cdot 2\pi \]
\[\left(3N + \frac{4.5}{28} \right) \cdot 2\pi \]
\[\left(3N + \frac{4}{28} \right) \cdot 2\pi \]
\[\left(3N + \frac{3}{28} \right) \cdot 2\pi \]
\[\left(3N + \frac{2}{28} \right) \cdot 2\pi \]
PLL with Soft Injection

- Cascading topology

Reference Clock

MDLL

Soft-Injection

Gating

DSM

Frequency-locked Loop

0.8-1.7GHz

328 Phases

100-600MHz

1× ~ 12×
Effective soft injection signal is generated by soft injection generator and gating array.

- **Soft Injection Generator**

```
  N1·REF
    |   MUX
    |   MUX
    |   MUX
    |   DQ
    |   Reset
    |   VDD
    |   Gating Array
    |   Injection signal
```

Digital varactor
Fractional-N Controller

- **Dither**
- **DSM**
- **Sub Integer**
- **FCW**
- **Gating Array**
- **Ref**
- **MDLL**
- **Retimer**
- **Deglitching**
- **Mapping**
Gating Array

Soft Injection generator

Frac-N Controller

Interpolative phase coupled DCO

DAC
Interpolative phase coupled DCO

- Standard cell design
- Interpolative phase coupling for accurate phase

[W. Deng, et al., ISSCC 2014]
Design Procedure

Logic

Verilog RTL

Logic Synt. Tool

Verilog netlist (gate-level)

DCO

Logic

Logic Synt. Tool

Verilog netlist (gate-level)

Logic

Netlist

P&R Tool

GDSII

Netlist
Chip Microphotograph

65nm CMOS technology
Phase Noise

Frequency: 1.2576 GHz
Integrated Jitter: 2.5 ps
$P_{DC}: 2.9 \text{ mW}$
Spur against Inj. Strength

![Graph showing spurious output level against injection strength](image)

<table>
<thead>
<tr>
<th>Spur Level [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60</td>
</tr>
<tr>
<td>-50</td>
</tr>
<tr>
<td>-40</td>
</tr>
<tr>
<td>-30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inj. Strength Control Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Soft)</td>
</tr>
<tr>
<td>(Hard)</td>
</tr>
<tr>
<td>001</td>
</tr>
<tr>
<td>011</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>111</td>
</tr>
</tbody>
</table>

14.1: A 0.048-mm² 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique
Jitter against Inj. Strength

![Graph showing Jitter against Inj. Strength](image)

- Integrated Jitter [pS]
- Inj. Strength Control Code
- (Soft) 001 011 101 111 (Hard)

14.1: A 0.048-mm² 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique

© 2015 IEEE
International Solid-State Circuits Conference
Comp. of Synthesizable PLLs

<table>
<thead>
<tr>
<th></th>
<th>This work</th>
<th>[1]</th>
<th>[2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>65nm</td>
<td>65nm</td>
<td>65nm</td>
</tr>
<tr>
<td>Power [mW]</td>
<td>2.9 @1.2576GHz</td>
<td>0.78 @0.9GHz</td>
<td>13.7 @2.5GHz</td>
</tr>
<tr>
<td>Area [mm²]</td>
<td>0.048</td>
<td>0.0066</td>
<td>0.04</td>
</tr>
<tr>
<td>Integ. Jitter [ps]</td>
<td>2.5</td>
<td>1.7</td>
<td>3.2*</td>
</tr>
<tr>
<td>FOM [dB]</td>
<td>-227</td>
<td>-237</td>
<td>-219*</td>
</tr>
<tr>
<td>Topology</td>
<td>Soft-IL</td>
<td>IL</td>
<td>TDC-based</td>
</tr>
<tr>
<td>Type</td>
<td>Frac-N</td>
<td>Integer-N</td>
<td></td>
</tr>
<tr>
<td>Synthesized?</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*FOM is calculated based on RMS jitter.

Conclusion

• A synthesizable fractional-N PLL with a soft-injection locking technique is presented.

• The soft injection locking technique provides potentials for future clock generation circuit designs.
Acknowledgement

This work is partially supported by STARC, MIC, SCOPE, MEXT, STAR, and VDEC in collaboration with Cadence Design Systems, Inc., Synopsys, Inc., and Mentor Graphics, Inc.