A Tail-Current Modulated VCO with Adaptive-Bias Scheme
Aravind Tharayil Narayanan, Wei Deng, Kenichi Okada, Akira Matsuzawa
Tokyo Institute of Technology, Japan

1. Research Background
 Effects of Phase Noise
 Transceiver Power Budget

 AIM: High performance VCO with minimum area/power overhead.

2. Design for High Performance

 Class-C VCO
 Tail-Feedback VCO

 Enforcing Noise
 VCO

 Tx

 Rx

 M1
 M2
 Cbias
 Vbias
 Vbias
 Vbias
 Enf = 10log Fomax - Fom
 Fomax = 174 + 10log 2
 Pow
 Fom

 Isolating the noise generated by active circuitry facilitates
 fair comparison of various VCO architectures.

 Class-C VCO
 Tail-Feedback VCO

 Can be reduced without increasing transistor noise.

3. Reliability Issues

 Small Φ required for high efficiency.
 Vbias must be reduced for small Φ.
 VCO fails to start-up at low Vbias.
 The proposed adaptive bias scheme achieves:
 Reliable start-up.
 Enhanced DC-RF conversion efficiency.
 These goals are achieved with very little overhead.

4. Proposed VCO with Adaptive-Bias

 Schematic Diagram

 Simulation Results

 High Vbias (> Vth) during start-up.
 Vbias is gradually reduced for optimum enhancing efficiency.

5. Tail-Noise Suppression

 Performance comparison.

6. Results and Conclusions