A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

Kenichi Okada, Ryo Minami, Yuuki Tsukui, Seitaro Kawai, Yuuki Seo, Shinji Sato, Satoshi Kondo, Tomohiro Ueno, Yasuaki Takeuchi, Tatsuya Yamaguchi, Ahmed Musa, Rui Wu, Masaya Miyahara, and Akira Matsuzawa

Tokyo Institute of Technology, Japan
Outline

• Motivation
• Transmitter
 • Mixer-first transmitter
• Receiver
 • Open-loop FVF-based amp.
• Measurement and Comparison
• Conclusion
60GHz-Band Capability

- QPSK \(\rightarrow\) 3.52Gbps/ch
- 16QAM \(\rightarrow\) 7.04Gbps/ch
- 64QAM \(\rightarrow\) 10.56Gbps/ch (not reported yet)

- 16QAM
 - 2-ch bonding \(\rightarrow\) 14.08Gbps
 - 3-ch bonding \(\rightarrow\) 21.12Gbps (not reported yet)
 - 4-ch bonding \(\rightarrow\) 28.16Gbps (not reported yet)
Design Considerations

• Wideband gain characteristics
 • RF: 57-66GHz
 • BB: 1.2GHz(1ch), 5GHz(4-ch bonding)

• Wide dynamic range
 • Linearity & Sensitivity
 • RX SNDR >40dB

• Low phase noise (performance limiter)*
 • -96dBc/Hz@1MHz (64QAM)

• I/Q mismatch & LO leakage**
 • Image rejection ratio <-40dBc

*K. Okada, et al., JSSC 2013
**S. Kawai, et al., RFIC 2013
Block Diagram

- Direct-conversion
- TX
 - Mixer-first topology
- RX
 - FVF BB amp.
 - Current-bleeding mixer
- LO
 - Injection-lock
 - 60GHz QILO*
 - +20GHz PLL

K. Okada, et al., ISSCC 2011
TX Design Considerations

Previous work*

This work

4x

<3GHz

-29mW

50Ω input

+15dB

+13mW

+15dB

-29mW

OIP3 -15dB

*K. Okada, et al., ISSCC 2012
Mixer-First Transmitter

Mixer-first receiver*, **

Mixer-first transmitter

This work

BBout \rightarrow RFin \rightarrow LO

10MHz \rightarrow 2GHz \rightarrow (20MHz-BW)

up-converted**

RFout \rightarrow BBin \rightarrow LO

57-66GHz \rightarrow 4.5GHz

(9GHz-BW)

down-converted even for \(Z_{in} \)

* M. Soer, et al., ISSCC 2009
** C. Andrews, et al., ISSCC 2010
Input Impedance and Leakage Cancel

\[Z_{\text{in}}(\omega_{\text{BB}}) = 200\Omega / \left[R_{\text{sw}} + \frac{4}{\pi^2} \{ Z_{\text{RF}}(\omega_{\text{BB}} + \omega_{\text{LO}}) + Z_{\text{RF}}(\omega_{\text{BB}} - \omega_{\text{LO}}) \} \right] \]

Wideband \(Z_{\text{RF}} \) is realized by \(R_f \)-feedback.

C. Andrews, et al., ISSCC 2010
TX Measurement Result

Lower-side-band gain including RF path
LO=61.56GHz

Lower-side-band gain including RF path
LO=61.56GHz

Gain [dB]

Frequency [GHz]
I/Q mismatch calibration* is applied. RF VGA & QILO phase adjustment

* S. Kawai, et al., RFIC 2013
TX EVM Measurement

EVM [dB]

Average output power [dBm]

ch.3 with 7.04Gb/s

16QAM

0 1 2 3 4 5 6 7 8 9 10

EVM [dB]

Average output power [dBm]
RX Mixer

- Current-bleeding to reduce LO power
- CCC at RF input

- $P_{dc}: 11\,\text{mW}$
- $CG: -7\,\text{dB}$
- $f_{\text{low}}: 0.27\,\text{MHz}$
- $f_{\text{high}}: >4\,\text{GHz}$
RX Baseband Amplifier

• Wide bandwidth (>5GHz)
• High gain and high linearity
• Low power consumption

⇒ Open-loop FVF-based amplifier

\[A_V \approx -\frac{g_{ds3}}{g_{m3}} \]

Flipped Voltage Follower* (FVF)

*R. Carvajal, et al., TCAS-I 2005
RX Baseband Amplifier (Cont.)

\[A_V \approx - \frac{1}{g_{m3}R_S} \]
modified FVF

\[A_V \approx \frac{g_{m7}R_L}{g_{m3}R_S} \]
by 6mW

\[-g_{m7}R_L - \frac{1}{g_{m3}R_S/(1/j\omega C_S)} \]
RX Measurement Result

Lower-side-band gain including RF path
LO=61.56GHz

![Graph showing RX measurement result with lower-side-band gain including RF path. The graph plots gain in dB against frequency in GHz.]
60GHz LO Considerations

-96dBc/Hz@1MHz for 64QAM

- 60GHz Quadrature Injection Locked Oscillator*

Channel bonding

- 7 carrier frequencies

4ch-bond

2ch-bond

Ch.1 Ch.2 Ch.3 Ch.4

58.32 59.40 60.48 61.56 62.64 63.72 64.80

* K. Okada, et al., JSSC 2013

© 2014 IEEE
International Solid-State Circuits Conference

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding
60GHz Quadrature LO Design

36/40MHz ref.

- 20GHz PLL: 64mW
- 60GHz QILO: 18mW(TX) & 15mW(RX)
- QILO frequency range: 58-66GHz
- Phase noise improvement by injection locking*
- -96.5dBc/Hz @ 1MHz at 61.56GHz

© 2014 IEEE
International Solid-State Circuits Conference

20.3: A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding

*K. Okada, et al., ISSCC 2011
Detailed Block Diagram

- TX Output
- PA
 - $P_{sat} = 10.3 \text{ dBm}$
- LNA
 - $NF = 4.2 \text{ dB}$
- RX Input

- RF amp.
- I Mixer
- Q Mixer

- LO buf.
- 60GHz QILO
- 20GHz PLL
- 60GHz QILO
- BB amp.
 - (FVF-FVF-SF)

- Control Logic
Die Photo

65nm CMOS

<table>
<thead>
<tr>
<th>Block</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>1.03mm²</td>
</tr>
<tr>
<td>RX</td>
<td>1.25mm²</td>
</tr>
<tr>
<td>PLL</td>
<td>0.90mm²</td>
</tr>
<tr>
<td>Logic</td>
<td>0.67mm²</td>
</tr>
</tbody>
</table>

TX: 186mW
RX: 155mW
PLL: 64mW
Measurement Setup

- 25-GS/s AWG
- 100-GS/s oscilloscope (33GHz BW)
- 14-dBi horn antennas
Setup for TX-to-RX Measurement

- Symbol rate: 1.76GS/s (1ch), 7.04GS/s (4ch bonding)
- Roll-off factor: 25% for WiGig spectrum mask
- A maximum distance is defined within a SNR of 9.8dB(QPSK), 16.5dB(16QAM), and 22.5dB(64QAM) for a theoretical BER of 10^{-3}.
10.56Gb/s 64QAM

64QAM with 10.56Gb/s is achieved for the full 4 channels.

<table>
<thead>
<tr>
<th>Channel/Carrier freq.</th>
<th>ch.1 58.32GHz</th>
<th>ch.2 60.48GHz</th>
<th>ch.3 62.64GHz</th>
<th>ch.4 64.80GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation</td>
<td>64QAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data rate</td>
<td>10.56Gb/s</td>
<td>10.56Gb/s</td>
<td>10.56Gb/s</td>
<td>10.56Gb/s</td>
</tr>
<tr>
<td>Constellation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX EVM</td>
<td>-27.1dB</td>
<td>-27.5dB</td>
<td>-28.0dB</td>
<td>-28.8dB</td>
</tr>
<tr>
<td>TX-to-RX EVM</td>
<td>-24.6dB</td>
<td>-23.9dB</td>
<td>-24.4dB</td>
<td>-26.3dB</td>
</tr>
<tr>
<td>Distance</td>
<td>0.08m</td>
<td>0.08m</td>
<td>0.13m</td>
<td>0.06m</td>
</tr>
</tbody>
</table>
7.04Gb/s 16QAM (max 28.16Gb/s)

28.16Gb/s is achieved by using 4-bonded channel.

<table>
<thead>
<tr>
<th>Channel/Carrier freq.</th>
<th>ch.1 58.32GHz</th>
<th>ch.2 60.48GHz</th>
<th>ch.3 62.64GHz</th>
<th>ch.4 64.80GHz</th>
<th>ch.1-ch.4 Channel bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation</td>
<td>16QAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data rate</td>
<td>7.04Gb/s</td>
<td>7.04Gb/s</td>
<td>7.04Gb/s</td>
<td>7.04Gb/s</td>
<td>28.16Gb/s</td>
</tr>
<tr>
<td>Constellation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX EVM</td>
<td>-27.8dB</td>
<td>-27.6dB</td>
<td>-28.4dB</td>
<td>-28.8dB</td>
<td>-20.0dB</td>
</tr>
<tr>
<td>TX-to-RX EVM</td>
<td>-24.6dB</td>
<td>-24.1dB</td>
<td>-24.6dB</td>
<td>-27.0dB</td>
<td>-17.2dB</td>
</tr>
<tr>
<td>Distance</td>
<td>0.7m</td>
<td>0.6m</td>
<td>0.8m</td>
<td>0.4m</td>
<td>0.07m</td>
</tr>
</tbody>
</table>
3.52Gb/s QPSK (max 14.08Gb/s)

14.08Gb/s is achieved by using 4-bonded channel.

<table>
<thead>
<tr>
<th>Channel/Carrier freq.</th>
<th>ch.1 58.32GHz</th>
<th>ch.2 60.48GHz</th>
<th>ch.3 62.64GHz</th>
<th>ch.4 64.80GHz</th>
<th>ch.1-ch.4 Channel bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation</td>
<td>QPSK</td>
<td>QPSK</td>
<td>QPSK</td>
<td>QPSK</td>
<td>QPSK</td>
</tr>
<tr>
<td>Data rate</td>
<td>3.52Gb/s</td>
<td>3.52Gb/s</td>
<td>3.52Gb/s</td>
<td>3.52Gb/s</td>
<td>14.08Gb/s</td>
</tr>
<tr>
<td>Constellation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX EVM</td>
<td>-28.1dB</td>
<td>-27.7dB</td>
<td>-29.0dB</td>
<td>-29.7dB</td>
<td>-20.1dB</td>
</tr>
<tr>
<td>TX-to-RX EVM</td>
<td>-25.3dB</td>
<td>-24.5 dB</td>
<td>-24.5dB</td>
<td>-26.6dB</td>
<td>-17.9dB</td>
</tr>
<tr>
<td>Distance</td>
<td>2.4m</td>
<td>2.0m</td>
<td>2.6m</td>
<td>0.9m</td>
<td>0.3m</td>
</tr>
</tbody>
</table>
Performance Comparison of 60GHz TRX

<table>
<thead>
<tr>
<th></th>
<th>Data rate / Modulation</th>
<th>TX-to-RX EVM</th>
<th>Power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiBeam [3]</td>
<td>7.14Gb/s (16QAM)</td>
<td>-19dB</td>
<td>TX: 1,820mW, RX: 1,250mW</td>
</tr>
<tr>
<td>Tokyo Tech [4, 5]</td>
<td>16Gb/s (16QAM)</td>
<td>-21dB</td>
<td>TX: 319mW, RX: 223mW</td>
</tr>
<tr>
<td></td>
<td>20Gb/s (16QAM) [5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMEC [6]</td>
<td>7Gb/s (16QAM)</td>
<td>-18dB</td>
<td>TX: 167mW, RX: 112mW</td>
</tr>
<tr>
<td>Panasonic [9]</td>
<td>2.5Gb/s (QPSK)</td>
<td>-22dB</td>
<td>TX: 347mW, RX: 274mW</td>
</tr>
<tr>
<td>This work</td>
<td>10.56Gb/s (64QAM)</td>
<td>-26dB</td>
<td>TX: 251mW, RX: 220mW</td>
</tr>
<tr>
<td></td>
<td>28.16Gb/s (16QAM)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Measurement for IEEE802.11ad/WiGig

<table>
<thead>
<tr>
<th>MCS</th>
<th>Modulation</th>
<th>Data rate [Mb/s]</th>
<th>TX EVM [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>QPSK</td>
<td>2502.5</td>
<td>-15</td>
</tr>
<tr>
<td>12</td>
<td>16QAM</td>
<td>4620</td>
<td>-21</td>
</tr>
<tr>
<td>24</td>
<td>64QAM</td>
<td>6756.75</td>
<td>-26</td>
</tr>
</tbody>
</table>

Measured by Agilent AWG + Osc. + VSA + 81199A in ch.3
60GHz CMOS Transceiver

First 64QAM
16QAM(4ch bonding)

Year

Data rate [Gb/s]

2007 2008 2009 2010 2011 2012 2013 2014

UCB
Univ. of Toronto
NEC
SiBeam, CEA-LETI
IMEC
Panasonic
Broadcom
Toshiba
Tokyo Tech
Conclusion

• A 60GHz direct-conversion transceiver in 65nm CMOS

• The first 64QAM transceiver (10.56Gbps/ch)
 – IEEE802.11ad/WiGig conformance: MCS1-MCS24(64QAM/OFDM)

• The first transceiver capable of 4-channel bonding (28.16Gbps by 16QAM) realized by
 – Mixer-first transmitter
 – Open-loop FVF-based baseband amplifier
 – Quadrature injection-locked oscillator
Acknowledgement

This work was partially supported by MIC, SCOPE, MEXT, STARC, Canon Foundation, and VDEC in collaboration with Cadence Design Systems, Inc., and Agilent Technologies Japan, Ltd. The authors thank Dr. Hirose, Dr. Suzuki, Dr. Sato, and Dr. Kawano of Fujitsu Laboratories, Ltd., and Prof. Ando of Tokyo Institute of Technology for their valuable discussions and technical supports.
References

References

Backup slides
Setup for TX Measurement

Symbol rate: 1.76GS/s (1ch), 7.04GS/s (4ch bonding)
Roll-off factor: 25% for WiGig spectrum mask
Measurement Results

Conversion gain of Tx

Conversion gain of Rx

Output power of Tx

Output power of Rx

SNDR [dB]

SNDR [dB]

P_{in} [dBm], CG [dB]

P_{out} [dBm], IM3, Noise Floor [dBm]

Frequency [GHz]

Frequency [GHz]