Proposal of layout-driven 1/2.8 size DAC design methodology

Tokyo Institute of Technology* & JST, CREST+
菅原 光俊*+、盛 健次*+、李 承鍾*、宮原 正也*、松澤 昭*
M.Sugawara*+, K.Mori*+, SJ.Lee*, M.Miyahara*, A.Matsuzawa*
Nov 19, 2013
このDACの話をします

Proposal of layout-driven 1/2.8 size DAC design methodology
Abstract

• Typical D-to-A converter (DAC) design flow is hierarchical; architecture → circuit → layout design.
• We propose a layout-driven architecture and circuit design.
• We have successfully designed a sub-micron wide slice including unit capacitor & unit switches.
• It earns scalable & smaller parasitic C,R,L, then significant higher speeds and lower powers.
• Our new silicon samples of 12bit 1Gsps DAC in a SAR ADC has demonstrated only 1/2.8 area of our previous design, and they have demonstrated +20% higher speeds.
Previous DAC design methodology

Previous DAC design example

1. C1=20fF, C2=40fF, C3=80fF, C4=160fF, ...
2. S1 NMOS W/L=2um/Lmin, S2=x2, S3=x4, S4=x8, ...
3. S1 PMOS W/L=2um/Lmin, S2=x2, S3=x4, S4=x8, ...
4. Separate each capacitors or shield.
5. Separate between capacitors and digital block or shield.

Proposal of layout-driven 1/2.8 size DAC design methodology

Nov 19, 2013
Previous DAC design concerns

- Top down design methodologies
 - Back-annotations & spice simulations can only guarantee final analog performances.
 - Even though, layout designs have most constrains, less freedom.
 - Layout designers use parametric cell generators in layout tools. Cell size order (1~10~μm) designs.
 - Layout designers never initiate better architecture and circuit designs.
Proposed DAC design methodology

- **Layout driven** = Give layout 1\(^{st}\) priority
 - Consider smallest size, better matching, higher speed, etc. *without cell border* at layout point of view
 - Common node T1 of capacitors instead of isolations and shields
 - Common source transistors w/o isolations
 - Use MOM capacitor (comb type)
 - Less wires
Proposed method: sub-micron slice

- sub-micron wide slice design
 = capacitor & switch in-line
 – <1μm pitch in deep sub-micron processes
 – No isolations, no shields except dummies on both sides
 – <<1μm wire lengths make significant small stray C,R,L.
 <1fF swing is available.
 – Total capacitance is determined by kT/C noise.
Proposed method: binary coded C-DAC

Proposed method:

- Binary Coded C-DAC
- We can cut short bars due to same voltages

![Diagram of binary coded C-DAC]

Nov 19, 2013
Proposal of layout-driven 1/2.8 size DAC design methodology
Proposed method: **scrambled binary**

Cancel gradient of capacitances, such as metal thickness.

Better INL, DNL

- \(C_1 = C_{1a} \)
- \(C_2 = C_{2a} + C_{2b} \)
- \(C_3 = C_{3a} + C_{3b} + C_{3c} + C_{3d} \)
- \(C_4 = C_{4a} + C_{4b} + C_{4c} + C_{4d} + C_{4e} + C_{4f} + C_{4g} + C_{4h} \)

Controlled by switch logic connections.
Proposed method: thermometer coded

Equal valued capacitors. Monotonicity is guaranteed. The code operates to add one by one.

0: all off
1: C1 on
2: C1,C2 on
3: C1,C2,C3 on
...

output +Vref GND

to digital block
Proposed method: **scrambled thermometer**

Monotonicity is guaranteed. Better INL
Proposed method: **scaling capacitor layout**

- Scaling capacitor (2uint capacitance value) can be located in same slice except metal wires.
- It makes better match to keep same regularity.
Proposed method: experimental results

• Our silicon samples’ experimental results
 – 12bit DAC in SAR ADC
 – DAC core size: \(0.0035\text{mm}^2 = 230\mu\text{m} \times 15\mu\text{m}\) (65nm)
 \(= 1/2.8\) of our previous design* (90nm)
 – Clock speed 1GHz. +20% higher than previous design*
 – Power consumption <2mW

Layout
Proposed method: logic layout in slice

- Digital logic is also in sub-micron slice in-line, in addition to above
 - D flip-flop (DFF) is located in-line by using 4 gates x 6 rows
 - <several μm metal wire length. Much smaller stray C,R,L than previous. → Higher speed
 - Binary → thermometer coder can also be designed same size as DFF
 - Any logic can be created into 4 gate per slice
Proposed method: $C + Sw + logic$ in slice

- Example of capacitor + switches + logic in slice.
- Half capacitor in a slice.
Proposed method: **Scalable along processes**

- Scalability along process nodes
 - Logic is scaled
 - MOS transistor switches are scaled
 - Metal width and gap of MOM capacitors are scaled
 - Metal wire width is scaled
 - Thermometer code arrows big capacitor mismatch (~50% error). Even smallest size capacitor can show enough performance

Hence, C-DAC by this method are scaled
Proposed method: **R-DAC layout**

- Apply to R-2R + segment 9bit DAC
 - 2R resistor based
 - R + switches + DFF + thermometer coder

Automated layout

“9ビットRDACの自動合成” 電子情報通信学会シリコンアナログRF研究会 2013年8月 盛他

Nov 19, 2013
Proposal of layout-driven 1/2.8 size DAC design methodology
Proposed method: R-DAC schematic

- Apply to R-2R + segment 9bit DAC
 - 2R resistor based
 - R + switches + DFF + thermometer coder

Total 3 pieces for R-2R

Total 63 pieces for thermometer code. Actual positions can be scrambled.

Proposal of layout-driven 1/2.8 size DAC design methodology
Conclusion

• We proposed layout driven architecture and circuit design
 – Give layout 1st priority
 – Proposed sub-micron wide slice design
 – Quite small size (e.i. 1/2.8)
 – Known, quite small stray C,R,L
 → higher speed, lower power, etc.
 → <1fF switching is available.
 – Process scalable analog design