A 60GHz 16QAM/8PSK/QPSK/BPSK Direct-Conversion Transceiver for IEEE 802.15.3c

Kenichi Okada, Kota Matsushita, Keigo Bunsen, Rui Murakami, Ahmed Musa, Takahiro Sato, Hiroki Asada, Naoki Takayama, Ning Li, Shogo Ito, Win Chaivipas, Ryo Minami, and Akira Matsuzawa

Tokyo Institute of Technology, Japan
Motivation

• 60GHz CMOS direct-conversion transceiver for multi-Gbps wireless communication

- 57.24GHz - 65.88GHzが利用可能
- QPSK \rightarrow 14Gbps/ch
- 16QAM \rightarrow 28Gbps/ch
- 64QAM \rightarrow 42Gbps/ch
IEEE 802.15.3c Specifications

- 57.24GHz - 65.88GHz
- 2.16GHz/ch x 4 channels
- QPSK ➔ 3.5Gbps/ch
- 16QAM ➔ 7Gbps/ch

<table>
<thead>
<tr>
<th>Channel Number</th>
<th>Low Freq. (GHz)</th>
<th>Center Freq. (GHz)</th>
<th>High Freq. (GHz)</th>
<th>Nyquist BW (GHz)</th>
<th>Roll-Off Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>57.24</td>
<td>58.32</td>
<td>59.40</td>
<td>1.76</td>
<td>0.25</td>
</tr>
<tr>
<td>A2</td>
<td>59.40</td>
<td>60.48</td>
<td>61.56</td>
<td>1.76</td>
<td>0.25</td>
</tr>
<tr>
<td>A3</td>
<td>61.56</td>
<td>62.64</td>
<td>63.72</td>
<td>1.76</td>
<td>0.25</td>
</tr>
<tr>
<td>A4</td>
<td>63.72</td>
<td>64.80</td>
<td>65.88</td>
<td>1.76</td>
<td>0.25</td>
</tr>
</tbody>
</table>

from IEEE802.15.3c-2009
性能比較

16QAMダイレクトコンバージョンが重要ターゲット

<table>
<thead>
<tr>
<th></th>
<th>Data rate / Modulation</th>
<th>Distance for BER <10⁻³</th>
<th>Integration</th>
<th>Power consumption</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] Gatech</td>
<td>7Gbps/QPSK, 15Gbps/16QAM</td>
<td>–</td>
<td>90nm, Tx, Rx, 49-55GHz PLL, 8-9GHz QPLL</td>
<td>173mW (Tx)</td>
<td>6.5mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>189mW (Rx)</td>
<td></td>
</tr>
<tr>
<td>[2] NEC</td>
<td>2.6Gbps/QPSK</td>
<td>wired</td>
<td>90nm, Tx, Rx w/o LO</td>
<td>133mW (Tx)</td>
<td>4.5mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>206mW (Rx)</td>
<td></td>
</tr>
<tr>
<td>[3] UCB</td>
<td>4Gbps/QPSK</td>
<td>1m with 25dBi external horn antenna</td>
<td>90nm, single-chip TRx inc. 30GHz PLL and BB</td>
<td>170mW (Tx mode)</td>
<td>6.88mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138mW (Rx mode)</td>
<td></td>
</tr>
<tr>
<td>[4] U. Toronto</td>
<td>4Gbps/BPSK</td>
<td>2m with 25dBi external horn antenna</td>
<td>65nm, single-chip TRx w/o LO</td>
<td>374mW with 1.2V</td>
<td>1mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(233mW with 1.0V)</td>
<td></td>
</tr>
<tr>
<td>[5] NTU</td>
<td>4Gbps/OOK</td>
<td>2cm with 5dBi on-board antenna</td>
<td>90nm, Tx, Rx, VCO, on-board antenna</td>
<td>183mW (Tx)</td>
<td>0.43mm²(Tx)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>103mW (Rx)</td>
<td>0.68mm²(Rx)</td>
</tr>
<tr>
<td>[6] NTU</td>
<td>2Gbps/FSK</td>
<td>120cm (1Gbps), 55cm (2Gbps) with 5dBi on-board antenna</td>
<td>90nm, single-chip TRx inc. PLL with on-board antenna</td>
<td>280mW (Tx)</td>
<td>1.26mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150mW (Rx)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80mW (PLL)</td>
<td></td>
</tr>
</tbody>
</table>

トロント大のBPSK無線機

• 差動LO(not 直交)によるBPSK変調
• QPSK以上は対応不可
• LOは未実装
• 4Gbps/QPSK
UCBのDirect-conversion無線機

- 90° hybridにより直交信号を生成
- 60.48GHz QPSKのみ対応
- LPFなし（帯域制限していない）
- 16QAM対応不可：-72dBc/Hz-1MHz offset (60GHz)
Challenges for 60GHz Transceivers

• **Direct-conversion** full CMOS integration
• **16QAM/8PSK/QPSK/BPSK** support for IEEE802.15.3c, WiGig, Wireless HD, etc.

• **60GHz quadrature LO**
 – Low phase noise for 16QAM
 – Wide frequency tuning (58-to-65GHz)
 – I/Q phase balance

• **60GHz LNA**
 – Low NF & High linearity
 – Wide bandwidth (gain flatness)

• **60GHz PA**
 – 10dBm output
 – High PAE (>10%)
Phase Noise Requirement

For 16QAM direct-conversion, -90dBc/Hz@60GHz is required.
60GHz Quadrature LO Scenario

- 60GHz quadrature PLL
 - Phase noise degradation
 e.g. -75dBc/Hz@1MHz-offset at 60GHz [1]

- 60GHz PLL with 90° hybrid [2]
 - I/Q mismatch

- 60GHz quadrature ILO with 20GHz PLL [3,4]
 - ILO: Injection-locked oscillator
 - Very wide tuning (58GHz-64GHz [4])
 - Excellent phase noise (-96dBc/Hz@1MHz-offset [4])

Direct-Conversion Architecture

Two 60GHz QILOs with 20GHz PLL

36MHz REFCLK

20GHz PLL

I Mixer

Q Mixer

60GHz QILO

Rx input

LNA

I+

I-

Q+

Q-

Tx output

PA

60GHz QILO
60GHz Quadrature LO

- Wide frequency tuning range
- Phase noise improvement by injection locking

In the diagram:
- 36MHz ref.
- 20GHz PLL
- 60GHz QILO
- PFD
- CP
- LPF
- (27,28,29,30)
- 4 CML

Frequencies:
- 19.44GHz
- 20.16GHz
- 20.88GHz
- 21.60GHz
- 58.32GHz
- 60.48GHz
- 62.64GHz
- 64.80GHz
Injection-Locked Oscillator

Previous work [3]

20GHz

PPF

Δθ

60GHz

I/Q mismatch

This work

20GHz

Single-side injection
- Small I/Q mismatch
- The same locking range

PPF: polyphase filter

Quadrature Injection-Locked Oscillator

- Phase noise is not important.
- Frequency coverage
- I/Q phase balance
Phase Noise

- Operation range: 54-61GHz
- Phase noise: -95dBc/Hz @1MHz (60.48GHz)
- Ref. spur: < -58dBc @20.16GHz
- 15mW (60GHz QILO), 66mW (20GHz PLL)
ILO Lock Test

20 chips with ±5% Vdd variation at room temp.

- Required injection power [dBm]
- P_{out} of PLL
 -2dBm
Performance Comparison of 60GHz LO

<table>
<thead>
<tr>
<th></th>
<th>This work</th>
<th>[1]</th>
<th>[5]</th>
<th>[6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{ref} [MHz]</td>
<td>36.0</td>
<td>100.0</td>
<td>251.3</td>
<td>234.1</td>
</tr>
<tr>
<td>Freq. range [GHz]</td>
<td>54~61</td>
<td>57~66</td>
<td>64~66</td>
<td>58~60</td>
</tr>
<tr>
<td>Phase noise @1MHz [dBc/Hz]</td>
<td>-95</td>
<td>-75</td>
<td>-84</td>
<td>-85</td>
</tr>
<tr>
<td>P_{dc} [mW]</td>
<td>81</td>
<td>78</td>
<td>72</td>
<td>80</td>
</tr>
<tr>
<td>Output type</td>
<td>Quadrature</td>
<td>Quadrature</td>
<td>Differential</td>
<td>Differential</td>
</tr>
</tbody>
</table>

4-Stage PA

- TL-based design for simulation accuracy
- Low-loss TL & MIM TL

Z₀ = 3Ω
50Ω, 0.8dB/mm

1st, 2nd stage
W = 2µm x 20

3rd, 4th stage
W = 2µm x 40

MIM TL for decoupling
Low-Loss Transmission Line

- 0.8 dB/mm
- Manually-placed dummy metal

![Diagram of transmission line with signal and ground layers, as well as a gap and dummy metal.]

Graphs showing frequency versus attenuation and impedance for manual and auto modes.

![Graph 1: Attenuation (dB/mm) vs. Frequency (GHz) for manual and auto modes.]

![Graph 2: Impedance (ohm) vs. Frequency (GHz) for manual and auto modes.]
MIM Transmission Line

- De-coupling use
- Modeling accuracy
- Avoiding self-resonance of parallel-plate capacitors

Up-Conversion Mixer

- Double-balanced Gilbert mixer
- Only one side is used
Tx Measurement

P_{sat}: 10.9 dBm
$P_{1\text{dB}}$: 9.5 dBm
PAE: 8.8% (only PA)

CG: 18.3 dB
LO freq.: 60.48 GHz (ch2)

P_{DC}: 186 mW
4-Stage CS-CS LNA

- $W_f = 1\mu m$ (1st & 2nd stages) for noise opt.
- $W_f = 2\mu m$ (3rd & 4th stages) for gain opt.
- Small resistors to prevent oscillations
- Variable gain by adjusting bias voltages
Down-Conversion Mixer

- Parallel-line transformer
- High common-mode rejection in matching blocks
Parallel-Line Transformer

- Split patterned ground shield (PGS)
- Center-tap with C

Graph 1:
- **MAG [dB]**
 - -0.8dB@60GHz

Graph 2:
- **Phase diff. [deg.]**
 - 5deg@60GHz
Rx Measurement

- NF: <6.8dB
- CG: 17.3dB (high-gain mode)
- CG: 4.7dB (low-gain mode)
- LO freq.: 60.48GHz (ch2)
- Lower cut-off freq: 5MHz
- P_{DC}: 106mW
Die Photo

65nm CMOS
Rx: 3.8mm2
Tx: 3.5mm2
PLL: 1.2mm2

20GHz PLL
Face-up mount with a 270μm wire on a BGA package

Performance Summary

<table>
<thead>
<tr>
<th>Tx</th>
<th></th>
<th>Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG</td>
<td>18.3dB</td>
<td>CG</td>
</tr>
<tr>
<td>P_{1dB}</td>
<td>9.5dBm</td>
<td>17.3dB (high-gain mode)</td>
</tr>
<tr>
<td>P_{sat}</td>
<td>10.9dBm</td>
<td>4.7dB (low-gain mode)</td>
</tr>
<tr>
<td>PAE</td>
<td>8.8% (only for PA)</td>
<td>NF</td>
</tr>
<tr>
<td></td>
<td></td>
<td><6.8dB (high-gain mode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIP3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5dBm (only for LNA)</td>
</tr>
</tbody>
</table>

LO

<table>
<thead>
<tr>
<th>Injection PLL</th>
<th>18-21GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. spur</td>
<td><-58dBc @20.16GHz</td>
</tr>
<tr>
<td>P_{out}</td>
<td>-2dBm @20.16GHz</td>
</tr>
<tr>
<td>Phase noise at 1MHz-offset</td>
<td>-108dBc/Hz @20.16GHz</td>
</tr>
<tr>
<td>Quadrature ILO</td>
<td>54-61GHz</td>
</tr>
<tr>
<td>Phase noise at 1MHz-offset</td>
<td>-95dBc/Hz @60.48GHz</td>
</tr>
</tbody>
</table>
Measured Spectrum

- 1.760Gs/s QPSK with 25% roll-off, 3dB back-off

IEEE802.15.3c spectrum mask
Modulation Characteristics

<table>
<thead>
<tr>
<th>Constellation</th>
<th>BPSK</th>
<th>QPSK</th>
<th>8PSK</th>
<th>16QAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1585 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3170 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4755 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6340 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td>BPSK</td>
<td>QPSK</td>
<td>8PSK</td>
<td>16QAM</td>
</tr>
<tr>
<td>Data rate 2.16GHz-BW</td>
<td>1.76Gb/s</td>
<td>3.52Gb/s</td>
<td>5.28Gb/s</td>
<td>7.04Gb/s</td>
</tr>
<tr>
<td>EVM</td>
<td>-18dB (-24dB with DFE)</td>
<td>-18dB (-28dB with DFE)</td>
<td>-17dB</td>
<td>-17dB</td>
</tr>
<tr>
<td>Distance (BER < 10^{-3})</td>
<td>0.5–274cm</td>
<td>0.5–270cm</td>
<td>0.5–20cm</td>
<td>0.5–17cm</td>
</tr>
</tbody>
</table>

8Gb/s(QPSK) and 11Gb/s(16QAM) with wider-BW
Performance Comparison

<table>
<thead>
<tr>
<th></th>
<th>Data rate / Modulation</th>
<th>Architecture</th>
<th>Antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC [9]</td>
<td>2.6Gbps/QPSK</td>
<td>Heterodyne w/o LO</td>
<td>Wired</td>
</tr>
<tr>
<td>NTU [10]</td>
<td>4Gbps/OOK</td>
<td>60GHz VCO (Tx) 50GHz VCO (Rx)</td>
<td>On-board</td>
</tr>
<tr>
<td>UCB [2]</td>
<td>4Gbps/QPSK 7Gbps/QPSK (loop-back)</td>
<td>Direct conversion with 30GHz PLL and 90° hybrid</td>
<td>External</td>
</tr>
<tr>
<td>Tokyo Tech</td>
<td>1.76Gbps/BPSK 3.52Gbps/QPSK 5.28Gbps/8PSK 7.04Gbps/16QAM within 2.16GHz-BW >8Gbps/QPSK >11Gbps/16QAM</td>
<td>Direct conversion with 60GHz quadrature oscillators</td>
<td>In-package</td>
</tr>
</tbody>
</table>

伝送レート比較

世界初の60GHz帯16QAMダイレクトコンバージョン無線機を実現

![グラフ]

データレート [Gbps]

- direct-conversion
- other arch.

Tokyo Tech
- 16QAM
- QPSK

UCB(QPSK)
- Toronto Univ.
 (only BPSK)

NEC(QPSK)
- OOK

FSK
- OOK
Summary and Conclusion

• The first 16QAM direct-conversion transceiver
• 60GHz quadrature ILO with 20GHz PLL
 – 20dB improvement in phase noise
• Full-rate 16QAM/8PSK/QPSK/BPSK for IEEE802.15.3c
• Ch1(57.24-59.40GHz) and Ch2(59.40-61.56GHz)
• Standard 65nm CMOS
• Antenna built into a package
 – Post-wall waveguide aperture antenna (PWAA)
• Tx (186mW), Rx (106mW), and PLL (66mW)
• 11Gb/s (16QAM), 8Gb/s (QPSK)
Acknowledgement

This work was partially supported by MIC, MEXT, STARC, SCOPE, NEDO, Canon Foundation, and VDEC in collaboration with Cadence Design Systems, Inc., and Agilent Technologies Japan, Ltd. The authors thank Dr. Hirose, Dr. Suzuki, Dr. Sato, and Dr. Kawano of Fujitsu Laboratories, Ltd., Dr. Taniguchi of JRC, Dr. Hirachi of AMMSys Inc., Dr. Noda, Mr. Kondo, Mr. Yamagishi, and Dr. Fukuzawa of SONY, and Prof. Ando of Tokyo Institute of Technology for their valuable discussions and technical support.
For additional multimedia material: See http://www.isscc.org
60GHz Research Team

Musa (PLL)
Asada (PA)
Han (modeling)
Bunsen (Rx)
Matsushita (Tx)
Minami (TRx)
Yamaguchi (ILO)
Murakami (ILO)
Okada
Bu (LNA)
Sato (VCO)

+ W. Chaivipas, N. Li, N. Takayama, S. Ito, Y. Nomiyama

15 Ph.D. & Master students in 4 years
Reference

Backup slides
Power Consumption

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx</td>
<td>186mW</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>114.6mW</td>
<td></td>
</tr>
<tr>
<td>Mixer</td>
<td>23.0mW x2</td>
<td></td>
</tr>
<tr>
<td>LO buf.</td>
<td>5.0mW x2</td>
<td></td>
</tr>
<tr>
<td>QILO</td>
<td>14.9mW</td>
<td></td>
</tr>
<tr>
<td>Rx</td>
<td>106mW</td>
<td></td>
</tr>
<tr>
<td>LNA</td>
<td>20.7mW</td>
<td></td>
</tr>
<tr>
<td>Mixer inc. IF amp.</td>
<td>30.4mW x2</td>
<td></td>
</tr>
<tr>
<td>LO buf.</td>
<td>5.0mW x2</td>
<td></td>
</tr>
<tr>
<td>QILO</td>
<td>14.9mW</td>
<td></td>
</tr>
<tr>
<td>PLL</td>
<td>66mW</td>
<td></td>
</tr>
</tbody>
</table>
Low-Loss Transmission Line
Low-Loss Transmission Line

- **R [Ohm/mm]**: Resistance as a function of frequency.
- **G [mS/mm]**: Conductance as a function of frequency.
- **L [pH/mm]**: Inductance as a function of frequency.
- **C [fF/mm]**: Capacitance as a function of frequency.