An Analysis on a Pseudo-Differential Dynamic Comparator with Load Capacitance Calibration

Daehwa Paik, Masaya Miyahara, and Akira Matsuzawa

Tokyo Institute of Technology, Japan
Contents

• Topology of Dynamic Comparator
• Analysis Conditions
• General Analysis
 – Gain of Dynamic Amplifier
• Load Capacitance Calibration
 – What Decides Compensated Voltage
 – Influence of PVT Variation
• Conclusion
An Analyzed Comparator

- CLK\textsubscript{Latch} becomes high
 1. Electric charge on the node Out\textsubscript{int} flows into gnd
 2. Current difference is determined by input signals
 - The difference is integrated on Out\textsubscript{int} and becomes larger as time passes
 3. The second stage regenerates the voltage difference

Fig. Transient waveform of a comparator [6], [7].

2011/10/27

D. Paik, Tokyo Tech.
Analysis Conditions of a Pre-amplifier

- Process is 90-nm CMOS
- The size of all transistors is 2 µm/100 nm
- To simplify the analysis
 - The rising time of \(\text{CLK}_{\text{Latch}} \) to 1 ps
 - \(M_3 \) and \(M_4 \) are in the deep triode when \(\text{CLK}_{\text{Latch}} \) is high
 - \(V_{\text{out_int}} \) can be approximated as the drain voltage of \(M_1 \) (or \(M_2 \))

\[
V_{\text{out_int}} = V_{dd} - \frac{I_{DS}}{C} \cdot t
\]

Fig. Simplified schematic of a dynamic amplifier when the \(\text{CLK}_{\text{Latch}} \) is high.
Mismatch Contribution

- Mismatch is dominated by a pair of input transistors
 - Mismatch of the second stage is suppressed by the gain of the pre-amplifier
 - I_{DS} is mainly decided by input transistors
 - Mismatch changes I_{DS} and the slew rate of Out_{int} is also varied

$$V_{out_{int}} = V_{dd} - \frac{I_{DS}}{C} t \quad \Rightarrow \quad \frac{dV_{out_{int}}}{dt} = -\frac{I_{DS}}{C}$$

- Load capacitance calibration [2], [3] is commonly used to compensate mismatch
 - To figure out the calibration effect, the gain is required

Fig. Mismatch contribution (Remains are 2.4 %).

Channel-Length Modulation

• I_{DS} is affected by the channel-length modulation
 – λ is the channel-length coefficient

\[
I_{DS} = \frac{1}{2} \mu C_{OX} \frac{W}{L} V_{eff}^2 \left(1 + \lambda \left(V_{DS} - V_{DS_{sat}} \right) \right)
\]

$V_{out_int} = V_{dd} - \frac{I_{DS}}{C} t$

Fig. Influence of the channel-length modulation.

- $V_{eff} = V_{GS} - V_{th}$
- $V_{DS_{sat}} = \text{the saturation condition of drain-source voltage} = V_{eff}$
Gain of A Dynamic Amplifier

- $G_{\text{amp_trans}}$ is satisfied only when $V_{\text{out_int}} \geq V_{\text{eff}}$
 - If $V_{\text{out_int}}$ falls to V_{eff}, $G_{\text{amp_trans}}$ reaches its maximum

\[
G_{\text{amp_trans}} = \frac{v_{\text{out}}}{v_{\text{in}}} = -\frac{i_{\text{DS}}}{C} \times \frac{1}{v_{\text{in}}} = \frac{2(V_{\text{dd}} - V_{\text{DS}})}{V_{\text{eff}}} \times \frac{1 + \frac{\lambda}{2}(V_{\text{DS}} - V_{\text{eff}})}{V_{\text{eff}}}
\]

Fig. Gain of a pre-amplifier.
Load Capacitance Calibration

- Using binary-weighted PMOS varactors
- By turning on or off PMOS, capacitance is varied
 - Reduce offset voltage

Fig. Load capacitance calibration.

Capacitors for calibration
(A number of unit cap. at each code = \(2^D\))

Fig. Error reduction by calibration
\(V_{\text{inp}} = V_{\text{inn}}\).
Input-Referred Compensated Voltage

• **Assumption**
 – Input signal of the second stage is decided when gain reaches its maximum

\[
v_{in\text{-diff_cal}} = \left(\frac{dV_{out\text{-int}}}{dC} \right)_{\text{input-referred}} \times \Delta C_{\text{cal}}
\]

\[
= -\frac{V_{\text{eff}}}{C} \times \left(1 + \frac{1}{2} \left(V_{\text{dd}} - V_{\text{eff}} \right) \right) \times \left(N_{\text{Code}} - 2^{N_{\text{Cal}} - 1} \right) \times (C_{\text{on}} - C_{\text{off}})
\]

• \((N_{\text{Code}} - 2^{N_{\text{Cal}} - 1})\): \(\Delta N_{\text{Code}}\) from the middle of calibration code

 \(N_{\text{Code}}\): calibration code

 \(N_{\text{Cal}}\): calibration resolution

• \((C_{\text{on}} - C_{\text{off}})\): **capacitance difference** of a unit PMOS varactor

 \(C_{\text{on}}\): on capacitance of a unit PMOS varactor

 \(C_{\text{off}}\): off capacitance of a unit PMOS varactor
Simulation Results

- Simulation condition
 - 1 LSB = 1.5 mV
 - $V_{dd} = 1.0$ V and $V_{in_com} = 0.5$ V
 - Size of a unit varactor is $W/L = 600 \text{ nm}/100 \text{ nm}$

\[
\text{Estimation: } \frac{V_{\text{eff}}}{C} \times \left(1 + \frac{\lambda}{2} (V_{dd} - V_{\text{eff}})\right) \times \left(N_{\text{Code}} - 2^{N_{\text{cal}}-1}\right) \times (C_{on} - C_{off})
\]

![Graph showing input-referred compensated voltage by the capacitance calibration.](image)

Fig. Input-referred compensated voltage by the capacitance calibration.
PVT Variation

- If surrounding condition is varied after compensation, **calibration accuracy is degraded**
 - Process is fixed in the factory
 - **Voltage** and **Temperature** should be considered

- **Assumption**
 - An error due to PVT variation, $\sigma_{V_{PVT}}$, is **uncorrelated** with offset after calibration, $\sigma_{V_{offset}}$

\[
\sigma^2_{V_{offset}} = \sigma^2_{V_{offset0}} + \sigma^2_{V_{PVT}}
\]

($\sigma_{V_{offset0}}$ is extracted from simulation data)
Input Common-Mode Voltage

- Input common-mode voltage is fluctuated
- Standard deviation of calibration code is σ_{Code}

Error due to V_{eff}

$$\frac{\partial V_{\text{in_diff_cal}}}{\partial V_{\text{in_com}}} \times \Delta V_{\text{in_com}}$$

$$\Delta V_{\text{eff}} \left(1 + \frac{\lambda}{2} \left(V_{\text{dd}} - V_{\text{eff}}\right)\right) \times (C_{\text{on}} - C_{\text{off}}) \sigma_{\text{Code}}$$

Error due to $\lambda = \frac{V_{\text{eff}}}{C} \times (V_{\text{dd}} - V_{\text{eff}}) \frac{\Delta \lambda}{2} \times (C_{\text{on}} - C_{\text{off}}) \sigma_{\text{Code}}$

Error due to $(V_{\text{dd}} - V_{\text{eff}}) = -\frac{V_{\text{eff}}}{C} \times \frac{\lambda}{2} \Delta V_{\text{eff}} \times (C_{\text{on}} - C_{\text{off}}) \sigma_{\text{Code}}$

$$\sigma_{V_{\text{PVT_VCOM}}} = \frac{V_{\text{eff}}}{C} \left(1 + \frac{\lambda}{2} \left(V_{\text{dd}} - V_{\text{eff}}\right)\right)$$

$$\times \sqrt{\left(\frac{\Delta V_{\text{eff}}}{V_{\text{eff}}} - \frac{\lambda \Delta V_{\text{eff}}}{V_{\text{eff}} - 2 + \lambda (V_{\text{dd}} - V_{\text{eff}})}\right)^2 + \left(\frac{(V_{\text{dd}} - V_{\text{eff}}) \Delta \lambda}{2 + \lambda (V_{\text{dd}} - V_{\text{eff}})}\right)^2} \times (C_{\text{on}} - C_{\text{off}}) \sigma_{\text{Code}}$$
Simulation Results

- Calibration is conducted when V_{dd} is 1.0 V, V_{in_com} is 0.5 V, and Temp is 27 °C

\[
\begin{align*}
\text{SNDR decrease} & = \text{SNDR} - \text{SQNR} \\
& = -10 \log \left(1 + \frac{12}{V^2} \sigma_v^2 \right)
\end{align*}
\]

![Graph](image)

Fig. Influence of input common-mode voltage on the capacitance calibration (1 LSB = 4.5 mV and a number of the Monte Carlo simulation is 500).
Influence of Supply Voltage

- Calibration is conducted when V_{dd} is 1.0 V, V_{in_com} is 0.5 V, and Temp is 27 °C.

$$\sigma_{V_PVT_Vdd} = \frac{V_{eff}}{C} \times \left(1 + \frac{\lambda}{2} \left(V_{dd} - V_{eff}\right)\right)$$

$$\times \left(\frac{\lambda \Delta V_{dd}}{2 + \lambda \left(V_{dd} - V_{eff}\right)}\right)$$

$$\times \left(C_{on} - C_{off}\right) \sigma_{Code}$$

Fig. Influence of supply voltage on the capacitance calibration
(1 LSB = 4.5 mV and a number of the Monte Carlo simulation is 500).
Influence of Temperature

• Calibration is conducted when V_{dd} is 1.0 V, V_{in_com} is 0.5 V, and Temp is 27 °C

Fig. Influence of temperature on the capacitance calibration (1 LSB = 4.5 mV and a number of the Monte Carlo simulation is 500).
Conclusions

• A pseudo-differential dynamic comparator with load capacitance calibration is analyzed
 – The gain of a dynamic amplifier
 • Expressed by a ratio of V_{dd} to V_{eff} and λ of an input transistor
 • Gain is inversely proportional to V_{eff}
 – Thermal noise, input-referred compensate voltage, and influence of PVT variation are analyzed
 • A dynamic comparator is sensitive to PVT variation
 – Mainly decided by V_{eff}
Acknowledgements

• This work was partially supported by MIC, CREST in JST, NEDO, Berkeley Design Automation for the use of the Analog FastSPICE(AFS) Platform, and VDEC in collaboration with Cadence Design Systems, Inc.
References