A Wideband LNA with an Excellent Gain Flatness for 60 GHz 16QAM Modulation in 65 nm CMOS

Qinghong Bu, Ning Li, Kenichi Okada and Akira Matsuzawa
Matsuzawa and Okada Laboratory, Tokyo Institute of Technology, Japan

1 Background
• IEEE 802.15.3c specification
 • 9 GHz unlicensed bandwidth
 • 2.16 GHz/ch
 • Several Gbps data transfer
 • QPSK ⇒ 3.5 Gbps
 • 16QAM ⇒ 7 Gbps
• 57 59 61 63 65 66 GHz unlicensed bandwidth
• Several Gbps data transfer
• QPSK ⇒ 3.5 Gbps
• 16QAM ⇒ 7 Gbps

2 LNA circuit design
• Consideration of LNA design
 • Multi-stage for high gain
 • Input matching for low noise
 • ESD protection
 • Inter-stage matching for gain flatness and low power loss
• Wideband four-stage LNA with excellent gain flatness
 • 3-dB bandwidth: 23 GHz
 • Variable gain: 6.3 dB to 17.5 dB
 • IIP3: -1.8 dBm
 • NF: < 4.3 dB

3 Measurement results
• Condition of measurement results
 • VDD = 1.0 V
 • Power = 24 mW
 • Vb1/Vb2 = 0.6 V

4 Conclusion
• Gain flatness is important in receivers
• Gain flatness influence the EVM of 16QAM modulation
• Gain degradation is requested less than 1dB in 16QAM modulation
• Wideband four-stage LNA with excellent gain flatness
• 3-dB bandwidth: 23 GHz
• Variable gain: 6.3 dB to 17.5 dB
• IIP3: -1.8 dBm
• NF: < 4.3 dB