Introduction

Broadband device (PA) is necessary to support current various communication methods.

Problems of Reported Wideband PA
- Large area, Insufficient output power, etc.

To Reduce Off-chip Component

Characteristics of Proposed Circuit

Output Impedance Tuning

If \(r_{ds} \ll \), \(Z_{out} = \frac{R_s + R_L}{g_m R_s + 1} \frac{1}{\imath f_C} \frac{1}{\imath f_C} \)

When \(f = \frac{1}{2\pi \sqrt{LC}} \) (Resonance freq.)

\(Z_{out} = \frac{R_s}{g_m R_s + 1} \frac{1}{\imath f_C} \frac{1}{\imath f_C} \)

- Tune \(C \) to cancel imaginary part of \(Z_{out} \)
- Tune \(R_L \) to match \(Z_{out} \) to 50 \(\Omega \)

In fact, \(r_{ds} \) is small...
Solution: • Cascode topology

Cascode & Thick-oxide Transistor

- Low breakdown voltage of transistor
 - In submicron CMOS process, \(V_{DD} = 1 \sim 2V \)
 - Output power \(\propto (\text{Voltage})^2 \)

Solution: • Use thick-oxide transistor
- Apply cascode topology and share output voltage

Measurement Results

- Input and output losses are calibrated from results.

Schematic & Chip Micrograph

[Image of the proposed PA & Prototype by 0.18\(\mu \)m CMOS]

Summary

- Realization of an isolator-less PA
- \(Z_{out} \) matching from 2.1 to 6.0GHz
- \(P_{1dB} \) more than 15dBm
- The first tunable PA at 2-6GHz