High-Speed Analog-to-Digital Converters
for mmWave Transceivers

Matsuzawa and Okada Laboratory
Tokyo Institute of Technology, Japan

1. Low interference
 - Resonance with oxygen molecules at 60 GHz
2. License-free bandwidth of 7 GHz
3. Prepare future demand for Gbps wireless transmission

mmWave

Resonance with oxygen molecules

License-free bandwidth

Research

Developing ADCs for Gbps wireless data transmission

1. Fixed Wireless Access (38 GHz)
 - Transmitting a huge amount of data in rural area
 - 8-bit flash
2. Wireless Personal Area Network (60 GHz)
 - Intended range of 10 meters of less
 - 6-bit subrange, 5-bit flash

A Fabricated 8-bit Flash ADC

- Amplifier
 - Increase input-referred accuracy of comparators
- Capacitor
 - 1-bit interpolation
 - Remove offsets of the amplifiers
- Comparator
 - 3-bit interpolation
 - Calibrating circuit is implemented
 - Charge pump

A Fabricated 6-bit Subranging ADC

- Merit of Subrange
 - Need a smaller number of comparator than the flash
- Capacitor DAC
 - Sampling for fine ADC + Subtraction
 - Linear-array DAC is used to increase speed
- Comparator
 - 2-bit interpolation
 - Calibrating circuit is implemented
 - Load capacitance

Measurement Results of the 8-bit ADC

- ENOB
 - Effective Number of Bits
 - 7.0 bits @500MSPs
- ERBW
 - Effective Resolution Bandwidth
 - 600 MHz
- Effects of the cal.
 - Increase SNDR by 4 dB
- FoM
 - Figure of Merits
 - 1.54 pJ/conv.

Measurement Results of the 6-bit ADC

- ENOB
 - Effective Number of Bits
 - 5.3 bits @700MSPs
- ERBW
 - Effective Resolution Bandwidth
 - 400 MHz
- Effects of the cal.
 - Increase SNDR by 2 dB
- FoM
 - Figure of Merits
 - 250 fJ/conv.

 - The best FoM among similar-performance ADCs
 (until June, 2009)