All Digital Phase-Locked Loops, its Advantages and Performance Limitations

Win Chaivipas, Philips Oh, and Akira Matsuzawa

Matsuzawa Laboratory, Department of Physical Electronics, Tokyo Institute of Technology
Tokyo Institute of Technology

Located about 20 min from central Tokyo, Tokyo Institute of Technology is home to approximately 10,000 students, of which about 10% are international students.
Lab is new, only 2 ½ years old
As of this year Matsuzawa Lab’s International student to Japanese student’s ratio will be 1:1

Our main research is in Mixed-Signal Analog and RF IC design and low-Power. Two main themes concern data converters, and RF components. A project concerning low analog circuit for biomedical application is also in progress.
Phase-Locked Loops (PLL) and Frequency Synthesizers

A Generic Transceiver

Before down conversion

After down conversion

The Charge-Pumped based PLL VS All-Digital PLL

Charge Pump PLL

- Sine wave
- Reference frequency
- Charge Pump
- PD
- CP
- LPF
- VCO
- Output Frequency

ADPLL

- Bit-stream representation of frequency ratio
- Digital Adder Phase Detector
- PD
- LPF
- DCO
- Output Frequency

Block Diagrams

- PLL Components: PD, CP, LPF, VCO
- ADPLL Components: PD, LPF, DCO, DAC, VCO

Key Components

- **PD** (Phase Detector)
- **CP** (Charge Pump)
- **LPF** (Analog Low-Pass Filter)
- **VCO** (Voltage Controlled Oscillator)
- **DAC** (Digital to Analog Converter)
- **DCO** (Digital Controlled Oscillator)
- **FDC or TDC** (Frequency or Time to Digital Converter)

Frequency Representation

- 17 = 10001
- 3 = 011
- 5 = 101

Matsuzawa Lab.

Tokyo Institute of Technology
All-Digital PLL Mathematical Model

Advantages of the All Digital PLL

- Access to intermediate signals in a digital form are significant
- Dynamic loop bandwidth adjustment can be made on the fly
- Direct frequency modulation is possible as has been shown
- Dynamic tracking of system performance is possible
Speeding up the PLL’s Settling speed Via Feed-Forward

Speeding up the ADPLL’s settling speed:

Assume that the frequency is changed not by the divide ratio, but by changing the reference frequency.

Other PLL Feed-Forward Papers:
Benyong Zhung und Phillip Allen, FEED-FORWARD COMPENSATED HIGH SWITCHING SPEED DIGITAL PHASE-LOCKED LOOP FREQUENCY SYNTHESIZER, 1999
K’_{DCO} can be found by measuring two input words to the DCO at different input frequency settings.
Perfect and Imperfect Reference Frequency Step Compensation

The output of the ADPLL without the feed-forward path can be shown to be related to the input by the following equation

\[
\Delta f_v = \frac{(N \cdot F(z) \cdot K'_{DCO})}{f_R \cdot (z - 1) + F(z) \cdot K'_{DCO}} \cdot \Delta f_R + \frac{f_{free} \cdot (z - 1) \cdot f_R}{f_R \cdot (z - 1) + F(z) \cdot K'_{DCO}}
\]

With the Feed-Forward Path and setting the DCO scaling factor to the reference frequency \(f_R \) and complete compensation by exact prediction of DCO gain and offset

\[
\Delta f_v = N \cdot f_R \cdot \frac{\Delta f_R}{f_R}
\]

In reality however, this is not possible due to the finite precision of the digital circuitry, and error in gain prediction. With prediction and precision error, the system's response then becomes

\[
\Delta f_v = \frac{\Delta f_R}{f_R} \cdot N \cdot f_R + \frac{\Delta f_R}{f_R} \cdot N \cdot f_r \cdot \frac{e_k \cdot (z - 1) \cdot f_R}{(z - 1) \cdot f_R + F(z) \cdot K'_{DCO}} - \frac{e_k + e_f + e_f \cdot e_k \cdot (z - 1) \cdot f_R}{(z - 1) \cdot f_R + F(z) \cdot K'_{DCO}} f_{free}
\]

- \(\Delta f_v \): Output Expected Frequency
- \(N \): Frequency Multiplication Factor
- \(\Delta f_R \): Input Frequency time step
- \(f_{free} \): DCO Free Running Frequency
- \(e_k \): DCO gain prediction error

Win Chaivipas, Philipus Oh, and Akira Matsuzawa "Feed-Forward Compensation Technique for All Digital Phase Locked Loop Based Synthesizers" Proc. ISCAS 06
Simulation Results 1

ADPLL with no Feed-Forward

• System Results in Significantly Faster Settling
• Overshoot becomes less dependent on damping factor and is almost eliminated for good DCO gain prediction

ADPLL with Feed-Forward
Simulation Results 2

Factor of 10 improvement in settling speed

All Digital Phase-Locked Loop Settling time improvement VS DCO gain estimation error

All Digital Phase-Locked Loop Settling time and improvement factor VS damping factor at 1% DCO gain prediction error
Advantages and Challenges of Feed-Forward Compensation

Advantages
- Feed-Forward Compensation does not affect the System’s stability as it does not modify the loop’s bandwidth or change loop parameters.
- Offset introduced into the system will be compensated for, even if the prediction is bad it does not affect system stability, it only affects settling time.
- Feed-Forward can eliminate the system’s overshoot’s dependence on damping factor for a reasonable DCO gain estimation.
- Feed-Forward compensation’s settling improvement factor increases with damping factor as the damping factor approaches and exceeds 1 as this is the range for which PLLs are designed for stability.

Challenges
- The actual possible improvement factor is still unknown until a real prototype is designed.
- Possibility to extend the feed-forward function from static to dynamic for increased settling improvement is possible, with the possible trade-off of the need for careful design as the stability may be compromised.
Limitations and Challenges remaining in ADPLL

- System is still fairly complex to design needing many signal processing blocks when compared to conventional PLL
- Major challenges remain in the Phase Detector and DCO
- TDC’s resolution cannot be increased enough to support higher frequencies without migrating to more advanced processes
- TDC’s accuracy is limited greatly by the process variation, which can degrade the system’s phase noise
- DCO’s design remain a major challenge with respect to achievable phase noise and tuning range
An example of a remaining challenge, TDC accuracy

In order to accurately know the phase of the feedback signal (DCO) running at GHz frequencies, it is necessary to know to measure the time accurately to within 10s of ps. This simulation shows the process variation of D-flip-flops used in the TDC for a 0.18um CMOS process. Process corners varying by 3 sigmas show the flip-flop's setup-hold time variation of nearly 20ps. This problem becomes greater for higher frequency PLLs.

Thank you for listening