

Akira Matsuzawa and Kenichi Okada

Tokyo Institute of Technology

2017.07.03

Contents

- Demand for high speed data transfer
- Developed high data-rate mm Wave transceivers
 - ISSCC 2012: 10Gb/s 16QAM
 - ISSCC 2014: 28Gb/s 4ch 16QAM, 64 QAM
 - ISSCC 2016: 56Gb/s 68-102 GHz, 16QAM
- High data-rate circuit design
 - Widely flat frequency characteristics
 - Low phase noise QVCO
- Conquer the f_{max} limit of CMOS: 300 GHz Tx
- Future prospect of high data-rate wireless systems
- Summary

Demand for high speed data transfer

2017.07.03

Progress of data rate in 60 GHz TRX

AWAD A. Matsuzawa, Tokyo Tech.

ΤΟΚΥΟ

TECH

Transfer time vs. Data capacity

Transfer time of big contents can be reduced by increasing the data-rate. Millimeter wave can realize several second transfer of movie film in DVD.

ΤΟΚΥΟ

DTECH PursuingExcellence

AWAD A. Matsuzawa, Tokyo Tech.

Our developed high data-rate mm Wave transceivers

2017.07.03

High freq. operation of semiconductor devices

 f_{T} and f_{max} of CMOS are increased by technology scaling

- O Bulk CMOS
- ▲ Ultra-Thin-Body Fully-Depleted (UTB FD) SOI
- Multi-Gate MOSFETs

2017.07.03

2017.07.03

60GHz CMOS transceiver attained 28Gbps

8

Chip photo

2017.07.03

Measured characteristics

World's first 64QAM

World's fastest 28Gbps

ΤΟΚ

Excellence

Channel/ Carrier freq.	ch.1 58.32GHz	ch.2 60.48GHz	ch.3 62.64GHz	ch.4 64.80GHz	ch.1-ch.4 Channel bond	
Modula- tion		16QAM				
Data rate*	10.56Gb/s	10.56Gb/s 10.56Gb/s 1		10.56Gb/s	28.16Gb/s	
Constella- tion**					· · · · · · · · · · · · · · · · · · ·	
Spec- trum**	0 -10 -20 -30 -40 -50 55.82 58.32 60.82	0 -10 -20 -30 -40 -50 57.98 60.48 62.98	0 -10 -20 -30 -40 -50 60.14 62.64 65.14	0 -10 -20 -30 -40 -50 62.30 64.80 67.30	0 -10 -20 -30 -40 -50 55.56 58.56 61.56 64.56 67.56	
TX EVM**	-27.1dB	-27.5dB	-28.0dB	-28.8dB	-20.0dB	
TX-to-RX EVM***	-24.6dB	-23.9dB	-24.4dB	-26.3dB	-17.2dB	

Chip with antenna in package

The 60GHz RF chip are mounted on the antenna in package

AWAD A. Matsuzawa, Tokyo Tech.

ΤΟΚΥΟ ΤΙΕΓΗ

Pursuing Excellence

Recent developed 60GHz transceiver set 12

Small size 60GHz transceiver set has been developed. It attains 6Gbps data transfer.

Smart phone

DTECH PursuingExcellence

Gate

Challenge for Frequency Interleave (FI) 13

Conventional

ΤΟΚΥΟΤΕΓΗ

Pursuing Excellence

Comparison Table

[7] This work [5, 6] [4] [8] Reference TX, TX, RX TX, RX TX, RX TX, RX Integration RX Frequency 240 155 57-66 57-66 68-102 [GHz] 56Gb/s 42.2Gb/s 16Gb/s 20Gb/s 28.16Gb/s **Data Rate** (QPSK) (16QAM) (QPSK) (64QAM) (16QAM) TX: Direct Heterodyne+ TRX Heterodyne Direct Conversion Hetero-Frequency **RX: Direct** Architecture dyne Conversion +Frequency Interleave Conversion Interleave 45nm 65nm **65nm** 65nm 65nm Technology CMOS CMOS CMOS SOI CMOS TX: 220 TRX: **TX: 251 TX: 544 TX: 260 Power Cons. RX: 260** 345 **RX: 220 RX: 432 RX: 300** [mW]

[4] K. Okada, et al., ISSCC2014 [5] S. Kang, et al., RFIC2014 [6] S.V. Thyagarajan, et al., RFIC2014 [7] Y. Yang, et al., RFIC2014 [8] R. Wu, et al., ISSCC2016.13.6

2017.07.03

AWAD A. Matsuzawa, Tokyo Tech.

15

ΤΟΚΥΟ ΤΙΞΕΗ

Pursuing Excellence

Our group

High data-rate circuit design

2017.07.03

High data rate techniques

Wider bandwidth and higher SNR are required to attain higher data rate

Shannon's theory

$$D_{rate} = BW \log_2 \left(1 + \frac{S}{N}\right)$$

Effect of the gain flatness

Poor gain flatness makes ISI (Inter Symbol Interference) *Pursuing Excellence* due to different gain for plus frequency and minus frequency.

1.76GHz-BW

Gain Flatness	0dB	2dB	3dB	
BER	~0	1.3e-5	3e-3	
Constellation	· · · · ·	*****	· · · · · · · · · · · · · · · · · · ·	

Matsuzawa & Okada Lab.

18

ΤΟΚΥΠ

2017.07.03

Multi-cascaded RF amplifiers

19

ΤΟΚΥΟ ΤΙΞΕ

Multi-cascaded RF amplifier can increase the gain flatness^{Pursuing Excellence} due to the distributed resonant frequencies.

Mixer circuit in TX

Passive mixer with resistive feedback RF amplifier can realize Widely flat impedance, rather than LC impedance matching method.

$$Z_{in}(\omega) \approx 200\Omega / \left[R_{SW} + \frac{8}{\pi^2} \operatorname{Re}[Z_{RF}(\omega_{LO})] \right]$$

AWAD A. Matsuzawa, Tokyo Tech.

ΤΟΚΥΟ

Measured gain of TX circuit

The gain flatness of 2 dB is attained for the band width of 4 GHz.

AWAD A. Matsuzawa, Tokyo Tech.

ΤΟΚΥΟ

Pursuing Excellence

Required phase noise of IQ-VCO for 16QAM / 22

A phase noise of LT. -90dBc/Hz@1MHz is required for 16QAM systems A reported phase noise of 60GHz IQ VCO is -76dBc/Hz @1MHz at most

K. Scheir, et al., ISSCC, pp. 494-495, Feb. 2009.

2017.07.03

AWAD A. Matsuzawa, Tokyo Tech.

ΓΠΚΥΠ

Pursuing Excellence

Q of inductors and capacitor

Q of capacitor is rapidly degraded with frequency. Q of Less than 10 at 60 GHz at most.

 \rightarrow Low phase noise 60 GHz VCO is hard to be realized.

Qc < 10 @ 60GHz

23

Pursuina Excellence

AWAD A. Matsuzawa, Tokyo Tech.

Injection locking technique

Injection locking technique is a very important circuit technique for high frequency signal generation and frequency divider. Phase noise of the oscillator is mandated by the injection.

2017.07.03

Injection locked 60GHz I/Q VCO

Developed the injection locked 60 GHz quadrature VCO The 60 GHz quadrature VCO is injected by 20 GHz PLL

$$PN_{OSC}(dB) = PN_{INJ}(dB) + 20\log M$$

A. Musa, K. Okada, A. Matsuzawa., in A-SSCC Dig. Tech. Papers, pp. 101–102, Nov. 2010.

AWAD A. Matsuzawa, Tokyo Tech.

25

Pursuina Excellence

ΤΟΚΥΟ

Low phase noise can be realized / 26

Quadrature injection locked 60GHz oscillator with 20GHz PLL /^{Pursuing Excellence} Low phase noise of -96dBc/Hz @1MHz. Previous one is -76dBc/Hz@1MHz

ΤΟΚΥΟ ΤΕΕΗ

2017.07.03

Conquer the f_{max} limit of CMOS

300 GHz Tx

Prof. Fujishima's group's work of Hiroshima Univ.

2017.07.03

CMOS 300GHzTransmitter

It is almost impossible to amplify the 300 GHz signal by CMOS technology. The 2nd step-up mixer is used and combine the signal in the balun. To increase the RF power. The image suppression is needed.

K. Takano, et al., Hiroshima Univ., ISSCC 2017, S17.9

AWAD A. Matsuzawa, Tokyo Tech.

ΤΟΚ

Pursuina Excellence

Performance comparison

Comparable frequency with compound semiconductor devices. Over 100 Gbps has been attained.

	[1]	[2]	[3]	[4]	[5]	This work	
Technology	250nm	35nm	35nm	0.13µm	40nm	40nm CMOS	
recimology	InP	GaAs	GaAs	SiGe	CMOS		
Freq. (GHz)	300	240	300	240	300	302	289-311
Modulation	QPSK	8PSK	QPSK	64QAM	16QAM	32QAM	128QAM
Pout (dBm)	-	-3.5	-4	7	-14.5	-5.5	
Pdc (W)	-	-	-	0.54	1.4	1.4	
Data rate	50	06	64	1.02	20	105	24 64 × 6
(Gb/s)	50	90	04	1.02	20	105	24.04 X 0

[1] Song et al., TMTT, 2014.
[2] Boes et al., IRMMW-THz, 2014.
[3] Kallfass et al., IEICE Trans., 2015.
[4] Sarmah et al., TMTT, 2016.
[5] Takano et al., Electron. Lett., 2016.

K. Takano, et al., Hiroshima Univ., ISSCC 2017, S17.9

2017.07.03

Future prospect of high data-rate wireless systems

2017.07.03

Calculations for data rate of TRX

Calculate the data rate as function of career frequency and Tx power

Shannon's theory $D_{rate} = BW \log_2(1 + SNR)$

$$D_{rate} \approx BW \frac{\log_{10}(SNR)}{0.3} = BW \frac{SNR(dB)}{3}$$

Received signal
$$P_{RX}(dB) = P_{TX} - B_{OFF} + G_{AT} + G_{AR} - I_L - S_{LOSS}$$

Spatial loss
$$S_{LOSS} = -20 \log \left(\frac{\lambda}{4\pi d}\right) = -20 \log \left(\frac{c}{4\pi df_c}\right) = 20 \log \left(\frac{4\pi}{c} df_c\right)$$

d: distance f_c: career frequency

ΤΟΚΥΟ

Noise $P_n(dBm) = -174 + 10\log BW + NF$

2017.07.03

60GHz Link budget (QPSK)

AWAD A. Matsuzawa, Tokyo Tech.

32

Pursuing Excellence

ΤΟΚΥΟ

Estimated data rate

Higher data rate can be expected up to the certain frequency, Pursuing Excellence however it is reduced after that frequency. **Higher power is required** to increase the data rate.

37

ΤΟΚΥΟ

Future direction

Future direction should be chosen by the usage model

AWAD A. Matsuzawa, Tokyo Tech.

ΤΟΚ

Summary

35

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

2017.07.03