

Akira Matsuzawa

Tokyo Institute of Technology

Contents

- Background and Motivation
- Development of High Data Rate 60 GHz CMOS Transceivers
- High Data Rate Circuits Design
- Basic Design Method for 60GHz CMOS RF Circuits
- High Speed and Low Power ADC
- Future Prospect of High Data Rate Wireless Systems
- Summary

Background and Motivation

Progress of data rate in 60 GHz band

Our lab. is developing high data rate wireless transceivers. 28 Gbps has been attained.

3

ΤΠΚ

П

Pursuing Excellence

60GHz bandwidth allocation on IEEE 802.ad

ΤΟΚΥΟ ΤΕΕΙ

Pursuing Excellence

Totally 9 GHz can be used.

The use of high # of bit can attain ultra-high data rate com.

Time for big data contents download

5/25

WiGig Usage Models

TOKYO TIECH Pursuing Excellence

WiGig White Paper, "Defining the Future of Multi-Gigabit Wireless Communications" July 2010

Development of High Data Rate

60 GHz CMOS Transceivers

4.2mm

K. Okada, et al., ISSCC 2012

The 3rd 60 GHz Transceiver on ISSCC 2014 12

Direct conversion method is used for wider bandwidth and low power

The 3rd 60 GHz Transceiver on ISSCC 2014 13 ΤΟΚΥΟ ΤΕCH **Pursuing Excellence** Chip was fabricated in 65 nm CMOS technology TX BB in 4.2mm ** ** TX out Q.OSC. フ PI **O BUF** KER W Π out RX in Q.OSC. Logic MIXER LO BUF. Area ТΧ 1.03mm² 1.25mm² RX CMOS 65nm, 1AI+11Cu **TX: 186mW** 0.90mm² PLL RX: 155mW 0.67mm² Logic PLL: 64mW

Chip with antenna in package

The 60GHz RF chip are mounted on the antenna in package

14

TOKYO TIECH

Pursuing Excellence

Chip measurement setup

Chip was measured with high speed measurement system

- 25-GS/s AWG
- 100-GS/s oscilloscope (33GHz BW)
- 14-dBi horn antennas

15

Pursuing Excellence

ΤΟΚΥΟ

Measured result

The world's first 64 QAM has been realized *Pursuing Excellence* The world's fastest 28 Gbps has been attained.

Channel	ch.1 58.32GHz	ch.2 60.48GHz	ch.3 62.64GHz	ch.4 64.80GHz	ch.1-ch.4 bond
Modula- tion	64QAM				16QAM
Data rate	10.56Gb/s	10.56Gb/s	10.56Gb/s	10.56Gb/s	28.16Gb/s
Conste- Ilation					***
Spec- trum	0 -10 -20 -30 -40 -55.82 58.32 60.82	0 -10 -20 -30 -40 -50 57.98 60.48 62.98	0 -10 -20 -30 -40 -50 60.14 62.64 65.14	0 -10 -20 -30 -40 -50 62.30 64.80 67.30	0 -10 -20 -30 -40 -50 55.56 58.56 61.56 64.56 67.56
TX EVM	-27.1dB	-27.5dB	-28.0dB	-28.8dB	-20.0dB
TX-to-RX EVM	-24.6dB	-23.9dB	-24.4dB	-26.3dB	-17.2dB

16

ΤΟΚΥ

Performance comparison

Highest data rate with low EVM and power dissipation

PursuingExcellence

17

	Data rate / Modulation	TX-to- RX EVM	Integration	Power consumption
SiBeam [3]	7.14Gb/s(16QAM)	-19dB	65nm, 32x32-array heterodyne, TX, RX, LO	TX: 1,820mW RX: 1,250mW
Tokyo Tech [4, 5]	16Gb/s(16QAM) 20Gb/s(16QAM)[5]	-21dB	65nm, direct-conversion, TX, RX, LO, antenna, analog & digital BB	TX: 319mW RX: 223mW
IMEC [6]	7Gb/s(16QAM)	-18dB	40nm, direct-conversion, TX, RX, w/o PLL	TX: 167mW RX: 112mW
Toshiba [7]	2.62Gb/s(QPSK)	N/A	65nm, heterodyne, TX, RX, LO, antenna, analog & digital BB	TX: 160mW RX: 233mW
IMEC [8]	7Gb/s(16QAM)	-15dB	40nm, 4-array direct-conversion, TX, RX, LO, antenna	TX: 330mW RX: 284mW for 1 stream
Panasonic [9]	2.5Gb/s(QPSK)	-22dB	90nm, direct-conversion, TX, RX, LO, antenna, analog & digital BB	TX: 347mW RX: 274mW
Broadcom [10]	4.6Gb/s(16QAM)	-20dB	40nm, 16-array heterodyne, TX, RX, LO, antenna, analog/digital BB	TX: 960mW RX: 1190mW
This work	10.56Gb/s(64QAM) 28.16Gb/s(16QAM)	-26dB	65nm, direct-conversion, TX, RX, LO	TX: 251mW RX: 220mW

High Data Rate Circuits Design

Data rate in communication

Wider bandwidth and higher SNR are required to attain higher data rate

Shannon's theory

$$D_{rate} = BW \log_2 \left(1 + \frac{S}{N}\right)$$

19

ΓΟΚ

Effect of the gain flatness

Poor gain flatness makes ISI (Inter Symbol Interference) Pursuing Excellence due to different gain for plus frequency and minus frequency.

Gain Flatness	0dB	2dB	3dB	
BER	~0	1.3e-5	3e-3	
Constellation	· · · · ·	* * * * * * * * * * * * * * * * * * *	动物的变形的	

20

ΤΟΚΥΟ

Multi-cascaded RF amplifiers

21

Multi-cascaded RF amplifier can increase the gain flatnes^{*Pursuing Excellence*} due to the distributed resonant frequencies.

Mixer circuit in TX

Passive mixer with resistive feedback RF amplifier can realize Widely flat impedance, rather than LC impedance matching method.

22

ΤΟΚΥΟ

Measured gain of TX circuit

The gain flatness of 2 dB is attained for the band width of 4 GHz.

23

Pursuing Excellence

ΤΟΚΥΟ

Required phase noise of IQ-VCO for 16QAN24

A phase noise of LT. -90dBc/Hz@1MHz is required for 16QAM systems A reported phase noise of 60GHz IQ VCO is -76dBc/Hz @1MHz at most

K. Scheir, et al., ISSCC, pp. 494-495, Feb. 2009.

Q of inductors and capacitor 25

Q of capacitor is rapidly degraded with frequency. Pursuing Excellence Q of Less than 10 at 60 GHz at most.

 \rightarrow Low phase noise 60 GHz VCO is hard to be realized.

Frequency Multiplier

***W. Chan, et al., ISSCC 2008

Injection locked 60GHz I/Q VCO *Pursuing Excellence* We have developed the injection locked 60 GHz I/Q VCO

The 60 GHz quadrature VCO is injected by 20 GHz PLL

A. Musa, K. Okada, A. Matsuzawa., in A-SSCC Dig. Tech. Papers, pp. 101–102, Nov. 2010.

- 20GHz PLL: 64mW
- 60GHz QILO: 18mW(TX)&15mW(RX)
- QILO frequency range: 58-66GHz
- Phase noise improvement by injection locking*
- -96.5dBc/Hz @ 1MHz at 61.56GHz

62.64GHz

63.72GHz

64.80GHz

Injection locking technique

29

Pursuina Excellence Injection locking technique is a very important circuit technique for high frequency signal generation and frequency divider. Phase noise of the oscillator is mandated by the injection signal.

Low phase noise can be realized / 30

Quadrature injection locked 60GHz oscillator with 20GHz PLL

Low phase noise of -96dBc/Hz @1MHz. Previous one is -76dBc/Hz@1MHz

Dig. Tech. Papers, pp. 101–102, Nov. 2010.

Pursuing Excellence

Basic Design Method for 60GHz

CMOS RF Circuits

Gain and Noise; f_{max} and f_T 32Gain and noise are mainly determined by f_{max} and f_T ofTransistor \bigotimes Lower gain

- ⊗ MAG is inversely proportional to the logarithm of the operating frequency f_c.
- अ Higher noise
 - ℬ NF_{min} is proportional to the operating frequency f_c.

 $W_{\rm f}$ =2.5 μ m, $N_{\rm f}$ =32, $V_{\rm gs}$ =0.8V and $V_{\rm ds}$ =0.8V.

$$NF_{\min} \approx 1 + \left(\frac{f_c}{f_T}\right) \sqrt{1.3g_m(R_g + R_s)}$$

Basic RF performances

f_{max} and f_T of MOS transistor will increase continuously. *Pursuing Excellence* Gain and NF will be improved by using future CMOS technology.

O Bulk CMOS

▲ Ultra-Thin-Body Fully-Depleted (UTB FD) SOI
□ Multi-Gate MOSFETs

ITRS RFAMS 2011.

ΓΠΚ

33

Cross coupled feedback capacitors 34 **Pursuina Excellence** Cross coupled feedback capacitors in a differential circuit **Differential circuit** can reduce the effective capacitance to increase the gain of 6dB at 60GHz. $f_{\rm max}$ $\frac{1}{2\sqrt{R_{g}g_{m}C_{gd}/(C_{gs}+C_{gd})+(R_{g}+r_{ch}+R_{s})g_{ds}}}$ Ccc This term is reduced Ccc 35 30 w/o cross-coupled cap. Gain[dB] 25 w/ cross-coupled cap. Capacitance is 20 6dB up cancelled 15 C_{qd}-C_{cc} Max 10 5 0 Cad-Ccc 20 80 100 120 0 60 40 Frequency[GHz] Y. Natsukari, et al., VLSI Circuits, Dig. Tech. Papers, pp. 252–253, June 2009.

W. L. Chan, et al., ISSCC. Tech. Dig., pp. 380-381, Feb. 2009.

Nov.12. 2015.

Feedback signal and stability

Feedback signal is suppressed by the cross coupled capacitors and this increase the stability of amplifier.

35

Pursuing Excellence

Matsuzawa & Okada Lab.

In-house PDK

ΤΟΚΥΟ ΤΕ

& Okada Lab. 🎥 🌆

Basic amplifier design

39

Pursuing Excellence

ΓΟΚ

Amplifier design;

accurate sizing, biasing, impedance matching and decoupling.

A several GHz oscillation will occur, if the feedback passes are made.

Decoupling capacitor

A decoupling capacitor has been developed using MIM capacitor with distributed structure to prevent a resonance, Which occurs, if used a conventional capacitor structure. A very low impedance of 3 ohm is realized.

ΤΟΚΥ

Pursuing Excellence

Tile-based layout method

Each component is previously measured and modeled. The same layout is utilized to maintain modeling accuracy.

In-house PDK

We have developed in-house PDK for 60-GHz circuit design

for Virtuoso

PursuingExcellence

42

Design Example

43

ΤΟΚ

High design accuracy at around 60GHz has been attained

High Speed and Low Power ADC

7bit 2.2GSps ADC for 60GHz ABB

- 7bit ADC for the 16QAM modulation
- Convert the voltage difference to the timing difference
- Folding and interpolation are realized by logic gates

M. Miyahara, A. Matsuzawa, ISSCC 2014

45

Pursuing Excellence

ΓΟΚΥΟ

V to T conversion in dynamic amplifier 46

Voltage difference can be converted to time difference in a dynamic amplifier.

Conversion from the voltage to the timing 47

The signal generation of larger voltage difference is faster in the dynamic amplifier.

Signal folding in time-domain / 48

Signal folding in time-domain can be realized easily by simple logic gates.

Performance comparison

Highest SNDR of 37.4 dB is attained in flash ADCs No calibration circuits are required.

This ADC will contribute increase of data rate of 60 GHz transceivers.

 P_d is large so far, however can be reduced by the optimization.

	ISSCC 2008 [3]	VLSI 2012 [8]	VLSI 2013 [9]	This work
Technology	90nm	40nm	32nm SOI	40nm LP
Resolution [bit]	5	6	6	7
Power Supply [V]	1	1.1	0.85	1.1
Sampling Frequency [GS/s]	1.75	3	5	2.2
Power Consumption [mW]	2.2	11	8.5	27.4
SNDR @Nyquist [dB]	27.6	33.1	30.9	37.4
FoMw [fJ/convstep]	64.5	99.3	59.4	210
FoMs [dB]	143.5	144.4	145.6	143.3
Core area [mm ²]	0.0165	0.021	0.02	0.052
Calibration	Off chip	Foreground	Off chip	No need

Future Prospect of

High Data Rate Wireless Systems

Calculations

Calculate the data rate as function of career frequency and Tx power

Shannon's theory
$$D_{rate} = BW \log_2 \left(1 + \frac{S}{N}\right)$$

$$D_{rate} \approx BW \frac{\log_{10}(SNR)}{0.3} = BW \frac{SNR(dB)}{3}$$

Received signal
$$P_{RX}(dB) = P_{TX} - B_{OFF} + G_{AT} + G_{AR} - I_L - S_{LOSS}$$

Spatial loss
$$S_{LOSS} = -20 \log \left(\frac{\lambda}{4\pi d}\right) = -20 \log \left(\frac{c}{4\pi df_c}\right) = 20 \log \left(\frac{4\pi}{c} df_c\right)$$

d: distance f_c: career frequency

ΤΟΚΥΓ

Noise
$$P_n(dBm) = -174 + 10\log BW + NF$$

52

Estimated data rate

53

Pursuina Excellence

ΤΟΚΥ

There is an optimum frequency for the maximum data rate. Higher Tx power is required to increase the data rate. 16 QAM looks the best to attain the maximum data rate.

Future direction

Future direction should be chosen by the usage model

54

Pursuing Excellence

ΤΟΚΥΟ

Summary

- High data rate wireless communication is demanded
- 28 Gb/s has been realized
- Wider bandwidth and higher SNR are the keys
 - Multi-cascaded amplifier
 - Passive mixer with resistive feedback
 - Injection locked I/Q oscillator
 - 7 bit ADC with time domain processing
- Accurate RF modeling and measurement up to 100 GHz is fundamentally important
- Optimum frequency for the maximum data rate.
 - Higher frequency does not guarantee the higher data rate
 - Higher Tx power is required to increase the data rate.
- Future direction should be chosen by the usage model
 - Long distance with reasonable data rate
 - Short distance with high data rate

$$D_{rate} = BW \log_2 \left(1 + \frac{S}{N}\right)$$

Acknowledgement

 I would like to thank Prof. K. Okada and this work was partially supported by MIC, SCOPE, MEXT, STARC, Huawei, Canon Foundation, STAR, and VDEC in collaboration with Cadence Design Systems, Inc., Synopsys, Inc., and Mentor Graphics, Inc., and Agilent Technologies Japan, Ltd.

And also,

Pursuina Excellence

Acknowledgement

Thanks lot to students

58

Pursuing Excellence

ΤΟΚΥΟ