

Substrate Noise Isolation Improvement by Helium-3 Ion Irradiation Technique in a Triple-well CMOS Process

<u>Ning Li¹, Takeshi Inoue², Takuichi Hirano¹, Jian</u> Pang¹, Rui Wu¹, Kenichi Okada¹, Hitoshi Sakane², and Akira Matsuzawa¹

¹Tokyo Institute of Technology ²S.H.I. Examination & Inspection, Ltd

SSDERC 2015

Outline

- Background
- Methods to improve isolation
- Helium-3 ion irradiation
- Simulation results
- Experimental results
- Conclusion

Background

- Analog and digital circuits are integrated on the same chip.
- Increase of digital circuit speed causes more substrate noise coupling problems.
- Analog circuit supply voltage decreases.

Methods to Improve Isolation

- Decreasing noise injection and noise reception
 - Guard rings
- Cutting the propagation path
 - Silicon on insulator (SOI)
 - High cost
 - Proton bombardment
 - High cost
 - Helium-3 ion irradiation

Top view

Cross view

Helium-3 Ion Irradiation

- Cutting the propagation path by increasing the substrate resistivity
- Can be integrated into the standard process
- The design margin is about 15-μm for active device [1].

Helium-3 bombardment from front side to create a high resistive region

Helium-3

- high irradiation efficiency
- small dose
- low process cost

Ref: [1] Ning Li, et al., TED, vol. 62, no. 4, April 2015.

Helium-3 Ion Irradiation Machine

Ion irradiation machine

Configuration of Irradiation System

(a), (b):	Vertical/horizontal scanning magnets
(c), (d), (e):	Turbomolecular pumps
(f):	Beam shutter
(g), (h):	wafer gate valves
(i):	Wafer
(j):	Automatic wafer handling device

Ref: https://www.shiei.co.jp/english/cyclotron_iis.html

Helium-3 Ion Irradiation Applications

For inductor

- Improving inductor quality factor
- For voltage controlled oscillator
 - 8.5dB improvement in phase noise

Voltage controlled oscillator

Substrate Resistivity

Resistivity after helium-3 ion irradiation

Substrate Resistivity Cont'd

• Resistivity after annealing at 200°C and 400°C for 1h.

Isolation Test

EM Simulation

- EM simulator – HFSS
- Two-port
- P-diff. taps
 - Area: 35x70µm²
 - Distance: 100µm
- High resistive region
 - Width: 50µm
 - Thickness
 - 65µm
 - 130µm

Cross view

- A 10-dB improvement at 2GHz
- As frequency increases, the improvement decreases due to the capacitive coupling

Test Patterns

Top view of test structures

- W: diffusion width
- L: diffusion length
- D: diffusion taps distance

	Size (W*L) (μm²)	Diff.	Guard Ring (GR)	Dist. (µm)
1	35*140	N+	None	100
2	35*140	N+	None	150
3	35*140	N+	None	200
4	35*70	N+	None	100
5	35*35	N+	None	100
6	35*140	N+	P+ GR	100
0	35*140	N+	P+ GR and DNW	100
8	35*140	P+	None	100
9	35*140	P+	N+ GR	100
1	35*140	P+	N+ GR and DNW	100

DNW: deep n-well

Chip Photo

- A 180-nm standard CMOS process
- Substrate resistivity about 3~4 Ω·cm

Chip photo

Mask

Measurement Results (1)

- Measured noise isolation with respect to tap distance
- Increasing D from 100µm to 150µm improves noise isolation 5dB, from 150µm to 200µm of 3dB at 10GHz
- Increasing *D* will increase chip area.

Measurement Results (2)

- Measured noise isolation with respect to tap size
- Large diffusion area causes more coupling.

Measurement Results (3)

Isolation is maintained after annealing at 200°C for 1 hour.

Measurement Results (4)

- Isolation is improved for all test patterns after helium-3 ion irradiation.
- A 10-dB improvement (90% noise reduction) is achieved for patters with GR.

Conclusions

- Helium-3 bombardment is proposed to create a local semi-insulated substrate of high resistibility.
- Noise isolation is improved about 10dB at 2GHz after helium-3 ion irradiation.
- A 90% noise reduction has been achieved for test structures with guard rings.
- The noise isolation can be kept even after annealing at 200°C for 1 hour.

Acknowledgements

 This work was partially supported by MIC, SCOPE, and VDEC in collaboration with Cadence Design Systems, Inc., and Mentor Graphics, Inc.

Thank you for your attention