A Fractional-N Sub-Sampling PLL using a Pipelined Phase-Interpolator aided DTC

T.N. Aravind, M. Katsuragi, K. Kimura, K. Okada, and A. Matsuzawa

Tokyo Institute of Technology, Japan

- Motivation
- Conventional Architectures
- Proposed Technique
- Noise Considerations
- Measurement
- Conclusion

Motivation

- Wireless carrier generation requires fractional-NPLL.
- Fractional operation introduces additional noise.
- Conventional synthesizer architectures:
 - <u>CP Based</u>: Poor close-in phase noise.
 - <u>TDC Based</u>: Power-jitter trade-off.
 - Injection Locking: Large spurious.
 - Sub-sampling: Power-jitter tradeoff.

Aim: Low-power high-purity fractional-NPLL

Fractional-NSS-PLL: Prior Art

DTC in reference path enables fractional operation

*[G. Marucci, ISSCC 2014] [Po-Chun Huang, ISSCC 2014] [K. Raczkowski, RFIC 2014]

DTC Only Architecture: Challenges

DTC Only Architecture

 $DR_{\rm DTC} \geq T_{\rm VCO}$

DTC with large dynamic range is required

DTECH PursuingExcellence

Proposed Technique

Dynamic range requirements are relaxed

5

Jitter Considerations

6

[A. Abidi, JSSCC 2006]

Intuitive Analysis: DTC Only

Large Dynamic Range [d.r.], Fine Resolution [res.]

$$\tau_{res} = \frac{\Delta C V_{DD}}{2I} \quad \sigma_{\tau_{res}}^2 = \frac{4kT\gamma \tau_{res}}{I(V_{DD} - V_{th})}$$

Large d.r. and Fine res.

=> ' Δ C' must be large enough to assure PVT robustness.

=> '*I*' needs to be kept high for low jitter.

Power-Jitter-Resolution trade-off.

ΓΠΚ

Intuitive Analysis: PI assisted DTC

Small Dynamic Range [d.r.], Fine Resolution [res.]

$$\tau_{res} = \frac{\Delta C V_{DD}}{2I} \quad \sigma_{\tau_{dr}}^2 = \frac{4kT\gamma \tau_{dr}}{I(V_{DD} - V_{th})}$$

$$\tau_{res}$$

• Small d.r. and Fine res.

=> Small '*τ*_{d.r.}'

=> '*I*' can be kept acceptably high for lower jitter.

Proposed architecture reduces dynamic range and hence jitter.

Proposed Fractional-N SSPLL

g

ΤΟΚΥΟ ΤΕΓΗ

Pursuing Excellence

Chip Micrograph

[PSL: Phase Switch Logic] [SSL: Sub-sampling Loop] [PI: Phase Interpolator] Stacked capacitors are used for area reduction

ΤΟΚ

Measurement Results

Division ratio for fractional-N: 50.163

Comparison with SOA

	This work	[1]	[2]	[3]
Architecture	SSPLL	SSPLL	MDLL	TDC
Freq. [GHz]	4.1-5.1	2.2-2.4	1.6-1.9	2.412-2.484 4.915-5.825
Power [mW]	3.8	17.3	3	9.5
Area [mm ²]	0.2	0.75	0.4	0.3
Phase Noise (in-band)	-112 @400kHz	-112 @50kHz	-112 @100kHz	-106 @100kHz
Integrated Jitter	254.4fs	266fs	1.4ps	173fs
FoM [dB]	-246.1	-239.1	-233.76	-245.5
CMOS Tech.	65nm	180nm	130nm	28nm FDSOI

•[1] Po-Chun Huang, ISSCC 2014 [2] G. Marucci, ISSCC 2014 [3] X. Gao, ISSCC 2015

12

Pursuina Excellence

ΓΟΚ

Conclusion

- A fractional-*N* SSPLL architecture is presented.
- The proposed architecture uses a combination of DTC and phase-interpolator
 - -Reduces intrinsic jitter from the multi-phase generator.
 - Power-jitter-resolution tradeoff is mitigated.

Jitter Considerations

[A. Abidi, JSSCC 2006]

14

Block Diagram

PLL Noise Shaping

Lower N implies lower close-in noise.
 Operation is limited to Integer-N.

[X. Gao, ISSCC 2009]