A 9.35-ENOB, 14.8 fJ/conv.-step Fully-Passive Noise-Shaping SAR ADC

Zhijie Chen, Masaya Miyahara, Akira Matsuzawa

Tokyo Institute of Technology

Symposia on VLSI Technology and Circuits

- Background and motivation
- Conventional Noise shaping technique
- Proposed fully passive noise shaping SAR ADC
- Experimental results
- Conclusion

Background and Motivation

SAR ADC architecture:

- SAR ADC mainly consists of digital circuits
- It can benefit from the technology scaling (like speed)
- Analog components affect the performance

Switch and Capacitor in SAR ADC

Capacitor array affects SAR ADC performance

- Higher resolution \rightarrow Larger cap \rightarrow Larger settling time
- Larger cap → Larger chip size → Slower speed

- Non-ideal effects further degrade performance
- How to improve the resolution?

Noise shaping technique

Move noise out of band of interest

PSD of Sigma-Delta Modulator

- Sacrifice speed for resolution
- Noise shaping is based on integrator, usually opamp

Simulation results of non-ideal effects

Noise shaping effect on capacitance

• Traditional SAR ADC

Thermal noise = kT/C

• Noise shaping SAR ADC

Thermal noise = (1-Z⁻¹) kT/C/OSR

Same SNR, smaller capacitor for noise shaping SAR ADC

- Background and motivation
- Conventional Noise shaping technique
- Proposed fully passive noise shaping SAR ADC
- Experimental results
- Conclusion

Conventional noise shaping technique

- 8 FIR filter introduces extra noise and extra area;
- 8 Opamp : extra power and flicker noise
- 8 Tech. scaling, difficult to design high performance Opamp
 - [1] J. Fredenburg, et al., JSSC 2012

- Background and motivation
- Conventional Noise shaping technique
- Proposed fully passive noise shaping SAR ADC
- Experimental results
- Conclusion

Traditional architecture Traditional 1st-order noise shaping architecture

Step 1: Get previous residue on top-plate of C-DAC; Step 2: Feed it back to input.

Residue in SAR ADC Residue on the top-plate of SAR ADC

After conversion @ N-1, residue $V_{top}(N-1)=X_{SAR,in}(N-1)-Y(N-1)$

FPNS-SAR ADC implementation

After conversion, V_{top} =-E(n-1)/2; Clear Charge of C₃, Q_{C3}=0;

FPNS-SAR ADC implementation

Get half top voltage, $V_{C3} = V_{top} (n-1)/2$; Sampling input, $V_{in}(n)$;

FPNS-SAR ADC implementation

5. Conversion@ N

With the help of C_2 and C_3 :

$$V_{DAC}(n) = V_{in}(n) - E(n-1) + E(n)$$

$$V_{DAC}(Z) = V_{in}(Z) + (1 - Z^{-1})E(Z)$$

Realize 1st-order NS

Capacitance comparison Traditional 10b SAR-ADC

Total: 4 X C

Proposed 10b noise shaping architecture (FPNS-SAR)

 \bigcirc C₁<C, hence, proposal saves area

Circuit details

Total Circuit of FPNS-SAR ADC:

Asynchronous logic; 8-bit C-DAC Different switches; four inputs comparator

Circuit details

Dynamic comparator [4]

Dynamic comparator, save power

[4] H. Wei, et al., JSSC 2012

- Background and motivation
- Conventional Noise shaping technique
- Proposed fully passive noise shaping SAR ADC
- Experimental results
- Conclusion

Experimental results

Realized 1st-order Noise Shaping

Experimental results-Comparison

	JSSC'10 [2]	JSSC'12 [3]	JSSC'12 [1]	This work
Architecture	SAR	CT-SDM	NS-SAR	FPNS-SAR
Noise Shaping / OTA	No/No	Yes/Yes	Yes/Yes	Yes/ No
Technology (nm)	65	130	65	65
Bandwidth (MHz)	0.5	15.6	11	6.25
Core Area (mm ²)	0.0259	0.27	0.0323	0.0123
Supply (V)	1	1.3	1.2	0.8
Power (µW)	1.9	4000	806	120.7
ENOB (bits)	8.75	9.6	10	9.35
FoM ^w (fJ/conv.)	4.42	160	35.8	14.8

[1] J. A. Fredenburg, *et al.*, JSSC 2012 [3] A. Jain, *et al.*, JSSC 2012
[2] M. V. Elzakker, *et al.*, JSSC 2010

- Background and motivation
- Conventional Noise shaping technique
- Proposed fully passive noise shaping SAR ADC
- Experimental results
- Conclusion

Conclusion

- First work that realizes *Passive* noise shaping SAR, save power;
- Maintain basic architecture and operation of SAR-ADC, inherits advantage of SAR-ADC;
- No Opamp, most are digital circuits, robust to future technology and power supply downscaling;
- Relax the requirement of circuit blocks, save area and save power.

Acknowledgements

This work was partially supported by HUAWEI, Mentor Graphics for the use of the Analog Fast SPICE (AFS) Platform, and VDEC in collaboration with Cadence Design Systems, Inc.