On the Variations of Shunt Characterization Technique of Decoupling Transmission Line for Millimeter-Wave CMOS

Korkut Kaan Tokgoz, Kimsrun Lim, Kenichi Okada, and Akira Matsuzawa

> Matsuzawa & Okada Lab. Tokyo Institute of Technology, Japan

Outline

□ Background

Motivation

- > Example Millimeter-Wave Amplifier
- Decoupling Transmission Line
- Issues of MIM-TL Measurements and Characterization
- Proposed MIM-TL Characterization
 - > Method
 - Variations
 - Measurement Results
- Application on One-Stage Amplifier
- Conclusion

*57-66 GHz Unlicensed Frequency Band

- 9 GHz Unlicensed band
 - Data rates up to 40 Gbps
- Large atmospheric attenuation
 - Secure Communication
 - **8** Limited Communication Range

An Example Millimeter-Wave Amp.

Several active and passive devices

This work focuses on Decoupling Transmission Line characterization
Internation Decoupling

4

Pursuina Excellence

Decoupling Transmission Line

Metal-Insulator-Metal (MIM) Transmission Line

Decoupling of DC and RF

□ More reliable in millimeter-wave frequencies

Lumped RF choke and Decoupling capacitor lacks accuracy

5

Issues with MIM TL Characterization

ΓΟΚΥΟ ΤΙΞΕΗ

Pursuing Excellence

Extremely low characteristic impedance Accuracy of direct S-parameters degrade

Overview of Proposed Method

1) Pad and transmission line modeling

Pursuing Excellence

3) De-embedding from the structures used

2

4) Performing numerical calculations for model

Proposed Characterization Method

• One MIM TL

• Two Cascaded MIM TL

8

Pursuing Excellence

Details: Tokgoz et. al., APMC 2014

Proposed Method

- S-parameters of MIM TL calculated from the reflections
- Reflections are calculated from the de ambedded measurement results and pre- est
 characterized Tee-junction, TLs

9

Resultant Variations on MIM TL

• Two cascaded MIM TL version model and measurement comparison

10

Pursuing Excellence

ΓΟΚ

Application on One-Stage Amplifier

Pursuing Excellence

Meas.

20

-25

0 10 Calc. from S_{M.11}

Calc. from S_{M.21}

40

30

80

90

50 60 70

Frequency (GHz)

00 10

a one-stage amplifier

Conclusion

Decoupling transmission line: MIM TL

Very low characteristic impedance

- Decreased accuracy in direct measurements
- An indirect shunt characterization method is introduced
 - S-parameters of a MIM TL calculated from reflections
- Variations from calculation procedure affect the results

> Measurement results of a one-stage amplifier

Still good agreement achieved on amplifier results

