W SIRF

Cross-Line Characterization for Capacitive Cross Coupling in Differential Millimeter-Wave CMOS Amplifiers

<u>Korkut Kaan Tokgoz,</u> Kimsrun Lim, Yuuki Seo, Seitaro Kawai, Kenichi Okada, and Akira Matsuzawa

Matsuzawa&Okada Lab. Tokyo Institute of Technology, Japan

15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2015 San Diego, CA

- Background & Motivation
- Cross-Line for Capacitive Cross Coupling
 - Characterization Structures
 - Method
- GSSG De-embedding Using Virtual-Thru
 - Results for De-embedding
- Results for Characterization
- Application Example on a Differential Amplifier

*57-66 GHz Unlicensed Frequency Band

- > 9 GHz Unlicensed band
 - Data rates up to 40 Gbps
- Large atmospheric attenuation
 - Secure Communication

8 Limited Communication Range

<u>*http://www.tele.soumu.go.jp/resource/e/search/share/2008/t3.pdf</u>

Direct Conversion RX on CMOS

- Single & differential RFamp I Mixer BBamp amplifiers ADC LO Buffer LNA Capacitive Cross-Coupling **Rx Input** Amplifier LO Buffer > Neutralization for ADC differential amplifiers **O** Mixer BBamp
 - > High gain
 - > Lower power consumption
 - Less Area
 - > Capacitive cross coupling amplifiers

15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2015 San Diego, CA

Capacitive Cross Coupling Amp.

- Important characteristic: Symmetry
- Asymmetrical crossing part
 - Amplitude imbalance
 - Phase imbalance
 - Unwanted mode conversions
- SNDR and EVM degradation

IN

OUT

Structures for Characterization

• Assuming symmetry and reciprocity

- Four unknowns for full characterization
 - Two four-port characterization structures

15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2015 San Diego, CA

Structures for Characterization

4 repeated

8 repeated

- > 4 and 8 repeated structure selected
 - > Easy calculation for fixture effects
- » Mixed-mode S-parameters
 - > Avoiding four-port T-parameters

G

15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2015 San Diego, CA

G

Method for Characterization

 Single-ended four-port S-parameters to mixed-mode S-parameters

$$[S_{MM}] = [M][S][M]^{-1} = \begin{bmatrix} S_{DD} & S_{DC} \\ S_{CD} & S_{CC} \end{bmatrix}$$

where;
$$[M] = \frac{1}{\sqrt{2}} \begin{bmatrix} I & -I \\ I & I \end{bmatrix}$$

- Symmetrical and reciprocal:
 - No mode conversion
- Two pure modes: two two-port networks
 Differential and common

Method of Characterization

■ Differential and common mode Sparameters → T-parameters

 $[T]_{4U,DD} = [T]_{LP,DD}[T]_{F,DD}[T]_{C,DD}{}^{4}[T]_{F,DD}[T]_{RP,DD}$ $[T]_{8U,DD} = [T]_{LP,DD}[T]_{F,DD}[T]_{C,DD}{}^{8}[T]_{F,DD}[T]_{RP,DD}$ $[T]_{PF,DD} = [T]_{4U,DD}[T]_{8U,DD}{}^{-1}[T]_{4U,DD}$

Similarly for common mode Pads has to be de-embedded

15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2015 San Diego, CA

GSSG Pad De-embedding

Solve for T-, and Π-model for two modes of pads

Results for De-embedding

Pad models: T-model and Π-model

15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2015 San Diego, CA

- Loss component and propagation constant independent of model
- Compared with single-ended transmission line results
 - Nearly the same (expected)

De-embedding from Fixture

- De-embed differential and common mode pad responses
 - From fixture results
- Solve for symmetrical fixture effects
 - For both left and right side
- De-embedding the fixture and pad Sparameters
 - Solve for one cross-line

$$[T]_{F,DD}^{-1}[T]_{LP,DD}^{-1}[T]_{4U,DD}[T]_{RP,DD}^{-1}[T]_{F,DD}^{-1} = [T]_{C,DD}^{4}$$

G

G

15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2015 San Diego, CA

G

G

Verification of Cross-Line

- Reconstruct the response of 8 repeated structure using:
 - Cross-line S-parameters
 - Fixture results
 - Pad results
- Comparison of model and measurement results are presented next

Results

Model and Measurements agree well up to 67 GHz

Application on Diff. Amp.

- An electrically symmetrical cross-line
 - Reduced amplitude and phase imbalance
- Characterization using two structures
- Mixed-mode S-parameters based calculations
 - Virtual-thru method for common and differential mode
- Model and measurement results for structure shows good agreement up to 67 GHz
- Amplifier model and measurements wellmatched up to 67 GHz

Thank you very much for your attention!

15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2015 San Diego, CA

