

松澤 昭

東京工業大学 大学院理工学研究科

2014.01.30

要旨

- これまで日本の電子機器メーカが行ってきたことはデジタル化デット型化。集積回路技術の向上でこれを達成
- デジタル化が終了,他分野の電子化などの発展ストーリが必要
- アナログ(SoC)技術が重要だが,開発力は低下
- 今後のアナログ回路は低電圧に対応でき、規則性のあるものに絞り込み、規則構造を活かしてレイアウトを含めた設計自動化を推進し、汎用的に使用できるようにすべき
- 今後の汎用的ADCとして高速12bit SAR ADCを開発。これまでの 無線通信用ADCの性能を1つのコアかつ最小電力で実現
- PLLの高性能化・低電力化に向けて、クラスC VCO、インジェクションロック発振器、サブps分解能TDCなどを開発中。
- プログラムアナログによりレイアウトを含めた設計自動化を推進。
 これにより、アナログ開発リソースが弱い企業でもアナログIPが使用できるようにしていきたい。

ΤΟΚΥΟΤΙΕΓΗ

内容

- エレクトロニクスの流れと今後の発展
- アナログ・デジタル混載SoC技術
- 60GHz CMOS トランシーバの開発
 アナログ・RFCMOS技術の最先端
- アナログフロントエンドの開発
 - スケーラブル 12bit SAR ADCの開発
- PLL技術
- レイアウトドリブン設計とプログラマブル
 アナログ回路技術
- まとめ

ΓΠΚΥΠ

エレクトロニクスの流れと今後の発展

2014.01.30

エレクトロニクスの流れ

ΤΟΚΥΟΤΕΓΗ

電子産業が過去30年間,推し進めたことは、電子機器のデジタル化であった。 現在はその終了期にあたる。今後は新分野への拡大が求められるが、 日本メーカーは開発・製造力が弱体化している。

2014.01.30

・直流電流センサの電源配線や通信配線等の設置コストの低減
 ・パワーコンデショナーからのスイッチング雑音の除去

太陽光発電監視システム (近計システムSWF-812)

耐ノイズ性センサと無線を用いたモニタシステム

医療分野:人工網膜

人工網膜チップを用い視力を取り戻す試みが行われている

A. Matsuzawa 横浜ITクラスタ

8

ΤΟΚΥΟ ΤΕΕΗ

人工網膜チップの埋め込み

T. Fujikado et al., Invest Ophthalmol Vis Sci. 2011.

2014.01.30

A. Matsuzawa 横浜ITクラスタ

ΤΟΚΥΟ ΤΕΕΗ

排尿機能の検査

前立腺肥大の手術に当たっては、3日間にわたる排尿機能の検査が必要である。現在は尿道から管を挿入して計測している。

ΤΟΚΥ

П

膀胱内圧測定用超小型カプセル

尿道から膀胱に挿入して, 膀胱内圧データを体外に無線で送る カプセルを開発した。超小型電池を用いるため低電力技術が不可欠

超小型電池の容量から平均100uAで4日間の動作

アナログRF回路は30uAの動作

ΤΟΚ

Pursuing Excellence

膀胱中のカプセルイメージ

2014.01.30

A. Matsuzawa 横浜ITクラスタ

Matsuzawa 🕺 🖁 🏎

デジタル値に変換する変換器を開発。30回/秒では3nWの超低電力

- 1. 10b SAR ADCのような構成
- 2. 差動回路
- 3. セルフクロック
- 完全ダイナミック動作 4.

305µm

2014.01.30

アナログ・デジタル混載SoC技術

2014.01.30

DVD再生用アナデジ混在信号処理技術

DVDレコーダーはSNRが低く、誤り率が高い、そこで波形等価やエラー訂正などの デジタル信号処理を使用したかったが、7b、400MHzという計測器なみのADCを必 要とした。

2014.01.30

A. Matsuzawa 横浜ITクラスタ

15

ΤΟΚΥΟ ΤΕΕΗ

アナログ・デジタル混載SoC

Pursuing Excellence 高性能アナログ回路やADCを含むDVDの全機能を世界で初めて ワンチップに集積。 アナログ・デジタル混載SoC時代の幕開けとなった。

アナログ・デジタル混載SoC技術により高性能化と低コスト化を同時に実現できる。

16

ΤΟΚΥΟ ΤΕΕΗ

2014.01.30

アナ・デジ混載SoCの威力

アナ・デジ混載SoCによるフルシステム集積が機器の高性能化 低コスト化の切り札であることは変わらないが,開発費の高騰 設計リソースの確保をどうするかが大問題

DVD Recorderの例

'2000 Model

'2003 Model

ΤΟΚΥΟ

PursuingExcellence

DVD用SoCの生産・販売

Pursuing Excellence

T |= | | |

ΤΟΚΥΟ

8

DVD用SoCは累積数量5.2億個,累積販売額2500億円に達したが,後半は大幅な価格下落により収益が取れなくなった。

60GHz CMOS トランシーバの開発

-- アナログ・RFCMOS技術の最先端 --

2014.01.30

帯域約1.8GHz, 4チャンネル

2014.01.30

各種コンテンツの転送に要する時間

ミリ波を用いれば無線でも約10秒でDVDのコンテンツが転送可能

2011年1月現在の 実測データからみた 平均的実効伝送レート							
WiMAX	12	Mbps					
LTE	4	Mbps					
A社FTTH	40	Mbps					
B社FTTH	120	Mbps					

ΤΟΚΥΟ ΤΙΕΓΗ

ミリ波 3~6Gbps

従来のミリ波システム

2006年にはGaAs技術を用いて60GHzのモデュールが完成していた^{wingExcellence}

しかしながら、更なるコストダウンが必要だった他、 ベースバンドチップが無く、データ伝送速度は50Mbps程度であった。 CMOS化が待ち望まれていた。ディスクリートだけではシステムが組めない。

Matsuzawa 🔐 & Okada Lab.

22

ΤΟΚΥΟ ΤΙΕΓΗ

2014.01.30

CMOSの微細化とRF回路性能

微細化によりCMOSのf_T, f_{max}は向上し, 60GHz動作も可能に。 高周波特性も化合物半導体に対し遜色なくなった。

- O Bulk CMOS
- ▲ Ultra-Thin-Body Fully-Depleted (UTB FD) SOI
- Multi-Gate MOSFETs

2014.01.30

A. Matsuzawa 横浜ITクラスタ

ITRS RFAMS 2011.

23

ΤΟΚΥΠ

- Pursuing Excellence • ダイレクトコンバージョンによる小型・低消費電力化
- 低消費電力ADC, DAC

2014.01.30

チップ性能測定系

A. Matsuzawa 横浜ITクラスタ

26

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

世界最高のデータレートを目指して / 2

世界最高のデータレート(16Gbps)を実現。

Constellation	• • 9506 points	•••• •••• •••• •••• 19912 points	13502 points	42024 points	
Modulation	QPSK	16QAM	QPSK	16QAM	
Symbol rate	1.76GS/s	1.76GS/s	5.0GS/s	4.0GS/s	
Data rate	3.52Gb/s	7.04Gb/s	10.0Gb/s	16.0Gb/s	
EVM (withDFE)	-30.5dB	-28.2dB	-15.2dB	-16.1dB	

ΤΟΚΥΟ ΤΕΓ

Pursuing Excellence

60GHzフロントエンド性能比較

28

ΤΟΚΥΟ ΤΙΞΕΗ

Pursuing Excellence

世界最高速の通信速度を達成

2014.01.30

2014.01.30

低位相ノイズ直交VCO

2014.01.30

2014.01.30

ADC性能の比較

TOKYOTIECH Pursuing Excellence

60GHz Tx/Rx用として世界最小レベルの消費電力とコア面積を達成

	Architecture	Cal.	fs [GS/s]	SNDR [dB]	Power [mW]	FoM [fJ/-c.s.]	Process [nm]	Area [mm²]
[1]	Flash	-	3.5	31.2	98	946	90	0.149
[2]	SAR	Internal	2.5	34.0	50	489	45	1
[3]	Folding	Internal	2.7	33.6	50	474	90	0.36
[4]	Pipeline, Folding	External	2.2	31.1	2.6	40	40	0.03
[5]	Flash	Internal	2.88	27.8	36	600	65	0.25
This work	Flash	Internal	2.3	26.1	12	316	40	0.06

[1] K. Deguchi, et al., VLSI Circuits 2007 [2] E. Alpman, et al., ISSCC 2009
[3] Y. Nakajima, et al., VLSI Circuits 2007 [4] B. Verbruggen, et al., ISSCC 2010
[5] T. Ito, et al., A-SSCC 2010

2014.01.30

研究室の高周波特性評価装置

110GHzまでの最新の高周波評価装置が揃っている

トランシーバー開発メンバー

修士学生が中心の開発メンバー 若い力が未来をつくる

A. Matsuzawa 横浜ITクラスタ

34

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

2011年1月

アナログフロントエンドの開発

-- スケーラブル 12bit SAR ADCの開発 --

2014.01.30

2014.01.30

A. Matsuzawa 横浜ITクラスタ

Matsuzawa 👔 & Okada Lab.

プログラマブルアナログ回路の概念

- アナ・デジ混載LSIにおいて、アナログ回路の開発が困難な状況は改善されておらず、今後ますます困難になる。
 - 微細化・低電圧化により設計難易度が上昇
 - 設計人材の減少(事業選択・集中,リストラ)
 - 設計コスト削減の要求(IP開発費減,試作回数減)
- プログラマブルアナログ回路による解決
 - コア回路の種類をできるだけ絞る
 - 微細化・低電圧化に耐えうる回路のみを選抜
 - レイアウトに規則性のあるもののみを選抜(RDAC, CDAC, etc)
 - レイアウトを含め設計の大半を自動化する
 - テスト容易化設計も併せて行う

アナログIPの開発方針

38

ΤΟΚΥΟΤΙΕΕΗ

Matsuzawa 🔒 👬

アナログ設計リソースが弱い企業でも高性能かつ確実に使いこなせる アナログIPを提供可能にしたい。

ADC の変換方式

39

ΤΟΚΥΟ ΤΕCH

Flash, SAR, パイプライン, ΔΣが主要なアーキテクチャである

SNRが84dB以上(上限は100dB程度)の場合はΔΣ型ADC 信号帯域が20MHz以上でSNRが40dB以上の場合はPipe, SAR Pipe, Int. SAR それ以外の領域ではSAR ADCが汎用的に使用できる

2014.01.30

A. Matsuzawa 横浜ITクラスタ

Radio Equipment

2014.01.30

A. Matsuzawa 横浜ITクラスタ

Matsuzawa & Okada Lab.

ΔΣADCの性能と面積

これまでは、性能に応じて、回路やパラメータを変更して対処していた。これでは設計生産性が上がらない。

SAR ADC: 面積:0.03mm² (65nm) P_d=2.0mW, SNDR=70dB CTΔΣADC: 面積:0.05mm² (40nm) P_d=2.6mW, SNDR=70dB

2014.01.30

SAR ADC

SAR ADCは最も単純かつ低消費電力で小面積なADCである。 これをベースにして、高SNR化、広帯域化を図り、 1つのADCコアで殆ど全ての用途に適合するようにしたい。 これにより設計効率を向上させる。

縦方向を短くしたのは並列動作(インターリーブ)による高速化 を考慮に入れたためである。

S. Lee, A. Matsuzawa, et al., SSDM 2013

ΤΟΚΥΠ

Pursuina Excellence

2014.01.30

直線性の向上

容量誤差や寄生容量による直線性劣化に対し, 微小容量と^{Presting Excellence} デジタル補正回路を用いて直線性を向上させる。

ΤΟΚΥΟ ΤΙΕΙ

MIM容量の限界とMOM容量

48

MOM容量はMIM容量と違い微細化により容量密度が増加するingExcellence したがって、微細化プロセスを用いることで占有面積が小さくなり、 距離が短縮されるので、高速化、低電力化を図ることができる。

MOM容量により微細化とともに容量部の面積縮小が可能である

消費電力特性:スケーラブルPd

完全なダイナミック動作により、ADCの消費電力はCMOSロジックと同様^{のExcellence} 動作周波数に比例する。低い変換周波数では超低電力化が可能。 低い変換周波数では低電圧動作により、より低電力化が可能である。 70MSpsの高速動作を実現。

A. Matsuzawa 横浜ITクラスタ

49

ΤΟΚΥΟ ΤΙΕΓΗ

性能比較

- 最高変換速度:70MSps
- ・最低動作電圧:0.8V
 世界最高レベルの性能を実現
- 最小消費電力:2.2mW at 50MSps
- ・ 最小FoM:28fJ
- 最小面積:0.03mm²

12bit SAR ADCs

ΤΟΚΥ

Pursuina Excellence

		This work	[3]	[4]	
Resolution (bit)		12	12	12	
V _{DD} (V)	0.8	1	1.2	1.2	1.2
fsample (MHz)	30	50	70	45	50
Pd (mW)	0.8	2.2	4.6	3	4.2
SNDR (dB)	62	64	65	67	71
FoM (fJ) Nyq/DC	81/28	62/33	100/45	36/31	36/29
Technology (nm)	65			130	90
Occupied area(mm ²)	0.03			0.06	0.1

S. Lee, A. Matsuzawa, et al., SSDM 2013.

[3] W. Liu, P. Huang, Y. Chiu, ISSCC, pp. 380-381, Feb. 2010.

[4] T. Morie, et al., ISSCC, pp.272-273, Feb. 2013.

2014.01.30

TOKYDTECH PursuingExcellence SNRは信号帯域が20MHzで62dB, デジタルフィルターで信号帯域を制限する ことでSNRを向上できる。帯域1MHzで78dBのSNRを実現 高い信号帯域に対してはインターリーブで対応の予定。 消費電力はこれまでの通信用ADCに比べ最少。

SNRと信号帯域:スケーラブルSNR

S. Lee, A. Matsuzawa, et al., SSDM 2013

1V, 50MSps Operation

51

2014.01.30

PLL技術

2014.01.30

PLL (位相同期ループ)は所望の周波数のクロックを作り出す 回路で、全てのLSIに必要不可欠なものである。 システムのタイミングや位相精度を決定するものであり 消費電力も大きくなりがちである

PII

53

Pursuing Excellence

ΤΟΚΥΟ

2014.01.30

リング発振器とLC発振器

PLLのジッタ、位相ノイズ、消費電力は主として発振器で決まる。リング発振器は LC発振器に比べ30倍程度ジッタが悪く、低電圧化により更に悪くなる。 しかしLC発振器は面積も大きく、消費電力も大きい。そこでLC発振器の 低電力化とリング発振器の低ジッタ化を進めている。

Q:LC共振回路 M:リング段数 γ:ノイズ係数

2014.01.30

A. Matsuzawa 横浜ITクラスタ

54

ΤΟΚΥΟ ΤΕΕΗ

0.2Vで動作するLC VCOの開発

0.2Vで動作するLC VCOを開発した。 電流が流れる位相範囲を縮小した。

低ノイズ・高効率C級発振器を基本とし、 発振し易いようにスタートアップ回路を設けた。

K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa, "A 0.114mW Dual-Conduction Class-C CMOS VCO with 0.2V Power Supply," Dig. Symp. VLSI Circuits, pp.228-229, June, 2009.

Fig. 2. MOS current waveform of single- and dual-conduction class-C VCOs under the same signal amplitude ($A_t = 3/4 * V_{DD}$, and $V_{th} = 5/2 * V_{DD}$).

Fig. 3. Voltage waveform of the proposed VCO for drain and both gate voltages.

55

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

2014.01.30

低電圧LC VCOの評価結果

LC発振器はDCカットできるために低電圧設計がし易い。

0.2Vで動作するLC発振器を開発し、 -104dBc/Hz @1MHz-offset の位相ノイズ特性を得た。 Pd=110uW, FoM=187dBc/Hz の低電力動作を確認。

K. Okada, A. Matsuzawa, et al., VLSI Circuits 2009.

	[2]	[1]	[1]	This work	
Technology	$0.13 \mu \mathrm{m} \mathrm{CMOS}$	$0.18\mu m$ CMOS	$0.18\mu m$ CMOS	$0.18\mu\mathrm{m}\mathrm{CMOS}$	
Supply voltage	1.0 V	0.5 V	0.35 V	0.3 V	0.2 V
Power consumption	1.3 mW	0.57 mW	1.46 mW	0.159 mW	0.114 mW
Oscillation frequency	4.9 GHz	3.8 GHz	1.4 GHz	4.5 GHz	4.5 GHz
Phase noise	-130 dBc/Hz	-119 dBc/Hz	-129 dBc/Hz	-109 dBc/Hz	$-104 \mathrm{dBc/Hz}$
	@3MHz-offset	@1MHz-offset	@1MHz-offset	@1MHz-offset	@1MHz-offset
FoM	196 dBc/Hz	193 dBc/Hz	190 dBc/Hz	190 dBc/Hz	187 dBc/Hz
Chip area	$0.50\mathrm{mm^2}$	$0.23\mathrm{mm^2}$	$0.76{ m mm^2}$	$0.29 \mathrm{mm^2}$	
Topology	Class-C (single)	TF	TF	Class-C (dual)	

TABLE 1. Performance summary.

2014.01.30

56

2014.01.30

60GHz用低位相ノイズ直交VCO

60GHzの直交VCOに20GHzのPLLでインジェクションロックをかけることで -96dBc/Hz@1MHzの良好な低位相ノイズを実現。

ダイレクトコンバージョンや16QAMが可能となった。

2014.01.30

A. Matsuzawa 横浜ITクラスタ

58

ΤΟΚΥΟ ΤΙΕΓΗ

システムクロック発生回路

 インジェクションロック技術を用いたLSIのシステムクロック発生用^{xc//ence} リング発振器。低ジッタ、低電力、小面積 IL VCO, Tj=1.8ps, 1mW, 0.02mm² 従来のPLLに代わるクロック発生器

2014.01.30

A. Matsuzawa 横浜ITクラスタ

59

Injection-locked Ring Oscillator

差動型インバータリングVCOにインジェクションを行う

60

PursuingExcellence

ΤΟΚΥΟ

Ref.: 300MHz (40MHz-300MHz) Freq.: 1.2GHz (0.5-1.6GHz) Integrated jitter: 0.7ps (10kHz-40MHz) Pdc: 0.97mW (1.2GHz) .201GHz

Offset Frequency [Hz]

2014.01.30

£(f):

f>50k

A. Matsuzawa 横浜ITクラスタ

Ston

これまでのTDCはインバータ遅延を 用いていたため10ps以下の分解能 は困難であった。

時間分解能: 0.8ps, 8bit, 40Msps, 2.5mW

2014.01.30

レイアウトドリブン設計と プログラマブルアナログ回路技術

2014.01.30

2014.01.30

これからのアナログ設計・レイアウト

66

2014.01.30

プログラマブルアナログ回路の例 / 68

TOKYOTECH Skill言語を用いてレイアウトを自動生成したRDACおよびCDAC

最近のアナログ回路は規則性があるものが多い

2014.01.30

レイアウト合成技術

69

& Okada Lab. 🏦 🎟

RDAC, CDACなど規則性のあるアナログ回路を自動合成^{PursuingExcellence} 開発期間の短縮, 高速・低電力・小面積

2014.01.30

回路図とレイアウト図(LOGICpn01)

ΤΟΚΥΟ **Pursuing Excellence**

TECH

論理回路も規則性を重視して選択し、自動レイアウトに乗せる。

2014.01.30

LOGIC回路、DFF回路、スイッチ回路を一直線に配置配線

	2 *** (\$1) 2* *** (\$ ****						
1 77		Z 20.0 Z 20		111 - St 36 - 1111 - 44			
3/							
			2011 6 /4				
100			in the second	🛄 8738\$6-88 87.88 📰 📈		S 2003 III (CORES 11	a contra article at the section of a
			/11月11///		建黄 医生生 印刷 网络松	tille II Asolu	
							L ibaaabaaabaaaba
					A State of a family of the second		
- 22							
a dan da							
the second							
-							
27-7			-411				
				in states was an east			
			200 22		2 11		

A. Matsuzawa 横浜ITクラスタ

ΤΟΚΥ

Pursuing Excellence

まとめ

- これまで日本の電子機器メーカが行ってきたことはデジタル化デット型化。集積回路技術の向上でこれを達成
- デジタル化が終了,他分野の電子化などの発展ストーリが必要
- アナログ(SoC)技術が重要だが,開発力は低下
- 今後のアナログ回路は低電圧に対応でき、規則性のあるものに絞り込み、規則構造を活かしてレイアウトを含めた設計自動化を推進し、汎用的に使用できるようにすべき
- 今後の汎用的ADCとして高速12bit SAR ADCを開発。これまでの 無線通信用ADCの性能を1つのコア,かつ最小電力で実現
- PLLの高性能化・低電力化に向けて、クラスC VCO、インジェクションロック発振器、サブps分解能TDCなどを開発中。
- プログラムアナログによりレイアウトを含めた設計自動化を推進。
 これにより、アナログ開発リソースが弱い企業でもアナログIPが使用できるようにしていきたい。

ΤΟΚΥΟ