Digitally Assisted Wireless Transceivers and Synthesizers

Kenichi Okada

Tokyo Institute of Technology

Symposia on VLSI Technology and Circuits

Outline

- Analog to Digital
 - Digitization of Wireless TRX
 - Digital Assistance
 - Wireless Transceiver
 - Frequency Synthesizer
 - Future Analog Design
 - Synthesizable Analog

Massive Digital Assistance

- Robustness
- Less redundancy

Case Study

- Partially replaced by pure digital-domain "calculation" (NOT time-domain analog processing)
- Filter: LPF in AD-PLL, LPF in wireless TX
- Equalizer: FIR in wireless, OFDM
- PLL: carrier and timing recovery in wireless RX
- Mixer: Low-IF transceiver
- **Only analog-domain**
- Oscillator: Clock generation
- Data converter: V-to-D, D-to-V, D-to-I, C-to-D,...
- Analog amplifier: voltage-to-voltage

Analog Demodulator

Costas-loop for BPSK

timing recovery loop (carrier & phase)

*H. Suzuki, et al., IEEE Trans. VT 1985

NCO: Number-Controlled Oscillator LF: Loop Filter PD: Phase Detector

*F. Gardner, IEEE Trans. Comm. 1993

Digital Equalizers in Wireless

Digitization of IF Mixer

Aim of This Talk

Digitization

 Wireless transceiver is a good example of digitized analog circuit. (for hinting)

Digital assistance

- Digital calibration/compensation is implemented in a system level to satisfy complicated requirements for wireless system.
- Mutual re-use of TX and RX for calibration
- Digitally-designed analog
 - Toward "Synthesizable Analog Circuit"

Outline

- Analog to Digital
 - Digitization of Wireless TRX
- Digital Assistance
 Wireless Transceiv
- Wireless Transceiver
 - Frequency Synthesizer
- Future Analog Design
 - Synthesizable Analog

Impairments in Wireless Transceiver

Mismatch in differential block F

- DC offset in RX
- IIP2 in RX
- LO leakage in TX
 Mismatch btw I and Q blocks
- Image signal
- Analog filter BW (LPF)
 Non-linearity
- IMD in PA

PVT variation

- Gain control
- Power control
- VCO LC tank
- ILFD/ILO
- **Environmental variation**
- TX-to-RX distance
- Fading
- Antenna reflection

*A. Jerng, "Digital Calibration for RF Transceivers," ISSCC 2012, Tutorial 9

Digital Equalizers

Image Rejection Ratio (IMRR)

TX IMRR Calibration

TX IMRR Calibration

I/Q Mismatch Calibration by Loop-back

- I/Q Amplitude offset
- I/Q Phase offset

I/Q Mismatch Calibration by Loop-back

- I/Q Amplitude offset
- I/Q Phase offset

*lason Vassiliou, et al., IEEE JSSC 2003.

Frequency-Dependent I/Q Mismatch

Frequency-Dependent IMRR

Gain/phase mismatch can be frequency-dependent.

Key Idea of Wireless Calibration

Self-calibration with less additional blocks Reuse of TRX each other

TX = Signal Generator for RX calibration **RX = Spectrum Analyzer** for TX calibration

Overall Procedure of TRX Calibration

1. RX BB LPF Calibration (using TX BB)

- I/Q gain mismatch
- LPF cut-off mismatch (including VGA and ADC)
- 2. TX BB LPF Calibration (using RX BB)
 - I/Q gain mismatch
 - LPF cut-off mismatch

3. TX I/Q Calibration (using detector and RX BB)

- Impairments of mixer, LO, RF I/Q amps., etc
- compensated by digital BB
- 4. RX I/Q Calibration (using TX)
 - Impairments of mixer, LO, RF I/Q amps., etc
 - compensated by digital BB

VGA and ADC are also included in RX BB calibration.

LPF gain/cut-off mismatch between I/Q paths are calibrated.

RF Loop-Back Calibration for TX

ADC is re-used for IM/LO calculation with DFT in BB.

*lason Vassiliou, et al., IEEE JSSC 2003.

RF Loop-Back Calibration for TX

RF Loop-Back Calibration for RX

TX is used for a test-tone generator.

*lason Vassiliou, et al., IEEE JSSC 2003.

I/Q Gain/Phase Mismatch Calculation

At least, a **10-bit ADC** is required for a IMRR of 40dB.

$$LPF(I^{2} + Q^{2})$$

$$RSSI \rightarrow AGC$$

$$LPF(I^{2} - Q^{2}) \cong \Delta g$$

$$LPF(I * Q) \cong -\Delta \theta/2$$

Modulated signal can be used.→ Background calibration

*S. Lerstaveesin, et al., IEEE JSSC 2006.

*lason Vassiliou, et al., IEEE JSSC 2003.

Calibration vs Compensation

Frequency independent (RF)

TX I/Q mismatch(RF) → Digital compensation (BB TX filter) RX I/Q mismatch(RF) → Digital compensation (BB RX filter)

FDE/OFDM

Frequency independent (BB)

- TX I/Q mismatch(BB) → Digital compensation
- RX I/Q mismatch(BB) → Digitally-calibrated analog (AGC) / Digital compensation

Frequency dependent (BB)

TX I/Q mismatch(BB) → Digitally-calibrated analog RX I/Q mismatch(BB) → Digitally-calibrated analog as a typical case / Digital compensation

*T. Tsukizawa, *et al.*, ISSCC 2013

Outline

- Analog to Digital
 - Digitization of Wireless TRX
- Digital Assistance
 - Wireless Transceiver
- Frequency Synthesizer
- Future Analog Design
 - Synthesizable Analog

Calibration in Frequency Synthesizer

- AFC for capacitor-bank in LC-VCO
- ILFD/ILO Calibration
- Linearity calibration/compensation
 - Loop-BW, Quantization noise, FM/Polar-TX

VCO: frequency ← voltage (varactor, C-bank)
DCO: frequency ← code (C-bank, I-control)
TDC: code ← delay (PVT, noise, layout, etc)
(ADC: code ← voltage)
(DAC: voltage ← code)
(Amp: voltage ← voltage)

ILO: Injection-Locked Oscillator (Multiplier)

ILFD Calibration

Locked*/Free-run** frequency is used.

*S. Pellerano, *et al.*, ISSCC 2008 **T. Shima, *et al.*, APMC 2011 ***W. Deng, *et al.*, A-SSCC 2012

Summary of Transceiver Calibration

- Wireless transceiver is a big system.
- Historically, architecture-level digitization has been applied with system-level calibration and compensation for PVT and environmental variations.
- Re-use of counter-part block for calibration

Outline

- Analog to Digital
 - Digitization of Wireless TRX
- Digital Assistance
 - Wireless Transceiver
 - Frequency Synthesizer
- Future Analog Design
 - Synthesizable Analog

Issues of Analog Circuit Design

Why is the simulated performance degraded?

- Imperfection caused by physical implementation
 - PVT layout non-ideality
 - mismatch
 - isolation/coupling

Compensated by digital assistance

- Larger Rd, Rs, Rg
- Fixed fin height (for FinFET)
- Self-heating
- No body effect

Scaled CMOS Layout

65nm layout style

32nm layout style

	Summer Street	den Harry		and show the	
and the second se			-		
STREET, ST		Conditioner in	Constant of the		
	Constant of the	Support Support	Terren		THE OWNER WATER
-	Ter deserve		-	==	
and a lot	Sumpling Street	and the second			
STATISTICS.	States and	and some first open		Incompanied of	
Section 1.		Common State		and the state of the	and the second second
	Solding to the	A REAL PROPERTY.	- County	al to experiment	
an entropy	The second se	The large set			al and the second
COLUMN STATE				and the second	and the owner whether the state

- Uni-directional features
- Uniform gate dimension
- Gridded layout

*M. Bohr, ISSCC 2009

Massive Digital Assistance

PVT

layout non-ideality

- mismatch
- isolation/coupling

Compensated by digital assistance

Delay and linearity in delay can be calibrated easily in time-domain analog circuits, e.g. AD-PLL.

- Robustness
 - Less redundancy

Outline

- Analog to Digital
 - Digitization of Wireless TRX
- Digital Assistance
 - Wireless Transceiver
 - Frequency Synthesizer
- Future Analog Design
 - Synthesizable Analog

Synthesizable Analog Circuits

with a standard-cell library without any custom-designed cells without manual placement

Issue: Layout Uncertainty

Massive digital assistance can overcome the layout uncertainty issue.

Ideal placement

 Actual placement
 → Unbalanced loading No layout symmetry
 e.g., DCO &TDC linearity

Synthesizable Analog Circuits

only by standard cells

- Synthesizable PLL*
- Synthesizable DCO
- Synthesizable DAC
- Synthesizable TDC
- Synthesizable ADC**

*W. Deng, et al., ISSCC 2014 **S. Weaver, et al., IEEE TCAS-I 204

Synthesizable ADC

ADC architectureComparator by NAND3SNDR of 35.9dB, 210MS/sGaussian offset distributionLinearity compensation by inverse Gaussian

*S. Weaver, et al., IEEE TCAS-I 2014

Synthesizable DCO

Control code

MUX and varactor*

Phase-Interpolator**, I-DAC***, and fine varactor***

*D. Sheng, et al., IEEE TCAS-II 2007

A. Matsumoto, et al., JSSC 2008 *W. Deng, et al., ISSCC 2014

Synthesizable DAC

Only standard cell

 $\begin{array}{ll} D_0 D_1 = 11 & V_{out} = 0V \\ D_0 D_1 = 10 & V_{out} = 0.5V \\ D_0 D_1 = 01 & V_{out} = 0.5V \\ D_0 D_1 = 00 & V_{out} = 1V \end{array}$

Synthesizable I-linear DAC

*W. Deng, et al., ISSCC 2014

Stdcell Varactor

Slide 60

Performance A

Injection-Locked PLL (IL-PLL)

Conventional CP-PLL and TDC-PLL (AD-PLL)

- Phase lock: feedback
- Frequency lock: feedback

Injection-Locked PLL (IL-PLL)

- Frequency lock: feedback ← Counter

The fine timing feedback is not required.

Synthesis-friendly

*W. Deng, et al., ISSCC 2014

Slide 63

Synthesizable IL-PLL

*W. Deng, et al., ISSCC 2013 **A. Musa, et al., JSSC 2014 ***W. Deng, et al., ISSCC 2014

Slide 65

Layout

CMOS 65nm Area: 0.0066mm² Jitter: 1.7ps P_{DC}: 780μW FOM: -236.5 dB

Comparison of the state-of-the-art PLLs

Slide 67

Comparison of Synthesizable PLL

	This work	[22]	[23]	[24]
	65nm	28nm	65nm	65nm
Power	0.78	13.7	3.1	2.1
[mW]	@900MHz	@2.5GHz	@250MHz	@403MHz
Area [mm ²]	0.0066	0.042	0.032	0.1
Integ. Jitter [ps]	1.7	N.A.	30	N.A.
RMS Jitter [ps]	2.8	3.2	N.A.	13.3
FOM [dB]	-236.5	-218.6*	-205.5	-214*
W/ custom cells?	No	No	Yes	Yes
Topology	IL-base	TDC-base	TDC-base	TDC-base

*FOM is calculated based on RMS jitter.

Conclusion

- Digitization vs Digitally-Assisted Analog
- Digitally-Assisted Analog
 - to Digitally-Designed Analog

e.g. Synthesizable Analog Circuit portability, scalability, robustness,...

References

- [1] F. Gardner, "Interpolation in Digital Modems-Part I: Fundamentals," IEEE Trans. on Communications, Vol. 41, No. 3, pp. 501-507, Mar. 1993.
- [2] H. Suzuki, Y. Yamao, and H. Kikuchi, "A Single-Chip MSK Coherent Demodulator for Mobile Radio Transmission," IEEE Trans. on Vecular Technology, Vol. VT-34, No. 4, pp. 157-168, Nov. 1985.
- [3] A. Jerng, "Digital Calibration for RF Transceivers," ISSCC 2012, Tutorial 9.
- [4] I. Vassiliou, et al., "A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS," IEEE Journal of Solid-State Circuits, Vol. 38, No. 12, pp. 2221-2231, Dec. 2003.
- [5] S. Lerstaveesin, et al., "A Complex Image Rejection Circuit with Sign Detection Only," IEEE Journal of Solid-State Circuits, Vol. 41, No. 12, pp. 2693-2702, Dec. 2006.
- [6] T. Tsukizawa, et al., "A Fully Integrated 60GHz CMOS Transceiver Chipset Based on WiGig/IEEE802.11ad with Built-in Self-Calibration for Mobile Applications," ISSCC Dig. Tech. Papers, pp. 230-231, Feb. 2013.
- [7] S. Pellerano, R. Mukhopadhyay, A. Ravi, J. Laskar, and Y. Palaskas, "A 39.1-to-41.6GHz $\Delta\Sigma$ Fractional-N Frequency Synthesizer in 90nm CMOS," ISSCC Dig. Tech. Papers, pp. 484-485, Feb. 2008.
- [8] T. Shima, J. Sato, K. Mizuno, K. Takinami, "A 60 GHz CMOS PLL Synthesizer Using a Wideband Injection-Locked Frequency Divider with Fast Calibration Technique," APMC, pp. 1530-1533, Dec. 2011.

References

- [9] W. Deng, A. Musa, K. Okada, and A. Matsuzawa, "A 0.38mm², 10MHz-6.6GHz Quadrature Frequency Synthesizer Using Fractional-N Injection-Locked Technique," A-SSCC Dig. Tech. Papers, pp. 353-356, Nov. 2012.
- [10] M. Bohr, "The New Era of Scaling in an SoC World," ISSCC Dig. Tech. Papers, pp. 23-28, Feb. 2009.
- [11] W. Deng, A. Musa, T. Siriburanon, M. Miyahara, K. Okada, and A. Matsuzawa, "A 0.0066-mm² 780-µW Fully Synthesizable PLL with a Current Output DAC and an Interpolative-Phase Coupled Oscillator using Edge Injection Technique," ISSCC Dig. Tech. Papers, pp. 266-267, Feb. 2014.
- [12] S. Weaver, B. Hershberg, and Un-Ku Moon, "Digitally Synthesized Stochastic Flash ADC Using Only Standard Digital Cells," IEEE Transactions on Circuits and Systems-I, Vol. 61, No. 1, pp. 84-91, Jan. 2014.
- [13] P. M. Levine, and G. W. Roberts, "A High-Resolution Flash Time-to-Digital Converter and Calibration Scheme," IEEE International Test Conference, pp. 1148-1157, Oct. 2004.
- [14] D. Sheng, et al., "An Ultra-Low-Power and Portable Digitally Controlled Oscillator for SoC Applications," IEEE Trans. Circuits and Systems-II, Vol. 54, No. 11, pp. 954-958, Nov. 2007.
References

- [15] A. Matsumoto, S. Sakiyama, Y. Tokunaga, T. Morie, and S. Dosho, "A Design Method and Developments of a Low-Power and High-Resolution Multiphase Generation System," IEEE Journal of Solid-State Circuits, Vol. 43, No. 4, pp. 831-843, Apr. 2008.
- [16] P. L. Chen, *et al.*, "A Portable Digitally Controlled Oscillator Using Novel Varactors," IEEE Trans. Circuits and Systems-II, Vol. 52, No. 5, pp. 233-237, May 2007.
- [17] S. Ye, L. Jansson, and I. Galton, "A Multiple-Crystal Interface PLL With VCO Realignment to Reduce Phase Noise," IEEE Journal of Solid-State Circuits, Vol. 37, No. 12, pp. 1795-1803, Dec. 2002.
- [18] N. D. Dalt, "An Analysis of Phase Noise in Realigned VCOs," IEEE Transactions on Circuits and Systems-II, Vol. 6, No. 3, pp. 143-147, March 2014.
- [19] W. Deng, A. Musa, T. Siriburanon, M. Miyahara, K. Okada, and A. Matsuzawa, "A 0.022mm2 970µW Dual-Loop Injection-Locked PLL with -243dB FOM Using Synthesizable All-Digital PVT Calibration Circuits," ISSCC Dig. Tech. Papers, pp. 248-249, Feb. 2013.
- [20] A. Musa, W. Deng, T. Siriburanon, M. Miyahara, K. Okada, and A. Matsuzawa, "A Compact, Low Power and Low Jitter Dual-Loop Injection Locked PLL Using All-Digital PVT Calibration," IEEE Journal of Solid-State Circuits, Vol. 49, No. 1, pp. 50-60, Jan. 2014.

References

- [21] D. Park, and S. Cho, "A 14.2mW 2.55-to-3GHz Cascaded PLL with Reference Injection, 800MHz Delta-Sigma modulator and 255fsrms Integrated Jitter in 0.13um CMOS," ISSCC Dig. Tech. Papers, pp. 344-345, Feb. 2012.
- [22] Y. Park, and D.D. Wentzloff, "An All-Digital PLL Synthesized from a Digital Standard Cell Library in 65nm CMOS," IEEE Custom Integrated Circuits Conf., Oct. 2011.
- [23] W. Kim, et al., "A 0.032mm2 3.1mW Synthesized Pixel Clock Generator with 30psrms Integrated Jitter and 10-to-630MHz DCO Tuning Range," ISSCC Dig. Tech. Papers, pp.250-251, Feb. 2013.
- [24] M. Faisal, and D.D. Wentzloff, "An Automatically Placed-and-Routed ADPLL for the MedRadio Band using PWM to Enhance DCO Resolution," IEEE Radio Frequency Integrated Circuits Symposium, pp.115-118, Jun. 2013.

Other example:

[25] D. Kaczman, et al., "A Single-Chip 10-Band WCDMA/HSDPA 4-Band GSM/EDGE SAW-less CMOS Receiver With DigRF 3G Interface and +90 dBm IIP2," IEEE JSSC, Vol. 44, No. 3, pp. 718-739, March 2009.

Acknowledgement

This work was partially supported by MIC, SCOPE, MEXT, STARC, and VDEC in collaboration with Cadence Design Systems, Inc., and Agilent Technologies Japan, Ltd.

Appendix

Ideal I/Q Up-Conversion

Calibration of Injection Lock Oscillator

*W. Deng, et al., A-SSCC 2012

Stochastic TDC

Ideal condition (no noise, no PVT)

Stochastic TDC

Stochastic TDC

Slide 83

Pulse Injection

- Severe timing design is required on the injection pulse width.
- *B. Helal, et al., JSSC 2009

Measured Phase Noise

Simulated C_{medium} against V_{in}

Fine Varactor Miller effect is gain-dependent. VOUT Vout Smaller CIN V_{IN} Larger C_{IN}

A transient variation of Vout can make a fine capacitance difference in CIN.

*W. Deng, et al., ISSCC 2014

Slide 88

Robust for Layout Uncertainty

Integrating Jitter: 1.7ps P_{DC}: 780μW FOM: -236.5 dB

Fully synthesized (proposed)

Integrating Jitter: 2.32ps P_{DC}: 640µW FOM: -234.6 dB

130 μm

Hierarchical P&R with synthesized DCOs (for comparison)