

High-Q Inductors on Locally Semi-Insulated Si Substrate by Helium-3 Bombardment for RF CMOS Integrated Circuits

<u>Ning Li¹, Kenichi Okada¹, Takeshi Inoue², Takuichi Hirano¹, Qinghong Bu¹, Aravind Tharayil Narayanan¹, Teerachot Siriburanon¹, Hitoshi Sakane², and Akira Matsuzawa¹</u>

¹ Tokyo Institute of Technology

² S.H.I.Examination & Inspection, Ltd

Symposia on VLSI Technology and Circuits

Outline

- Background
- Motivation
- Conventional Methods to improve inductor quality factor
- Helium-3 Bombardment
- Experimental Results
 - Quality Factor Improvement
 - Reliability
 - VCO Phase Noise Improvement
- Conclusion

Background

- CMOS on-chip inductors are indispensable for RF circuits.
 - High integration
 - No need for $50-\Omega$ interface
 - VCO, LNA, PA, etc
- RF circuits suffer from the poor performance.
 - Thin metal line
 - Low substrate resistivity less than $10\Omega\cdot\text{cm}$
 - Q is around ten for on-chip inductor.

Inductor Loss Mechanisms

- Losses by currents in metal coil
 - Ohmic loss, Skin effect,
 Proximity effect
 - Improved by using thick metal
- Substrate loss
 - Eddy currents in substrate

$$Q(\omega) \cong \frac{\omega L}{R}$$

- Q: quality factor
- ω : frequency in radius
- L: inductance
- R: parasitic resistance

Motivation

- Improve quality factor of on-chip inductors by decreasing silicon substrate loss
- Ensure circuits working well
 - No damage on active devices

Conventional Methods to Improve Q

- Post-passivation interconnect (PPI)
- Proton Implantation

Conventional Methods to Improve Q

- Post-passivation interconnect (PPI)
 - limited to wafer level packaging (WLP)
 - Large parasitic from the high aspect ratio via (HAR vi)

Reference: [1], C. C. Liu et al., IEDM 323, 2012. [2], G. J. Carchon, et al., MTT 2004 Slide 6

Conventional Methods to Improve Q (Cont'd)

- Proton bombardment
 - Good performance
 - Large dose amount
 - For R_{sub} >1k Ω , about 10¹⁵cm⁻²
 - High cost
 - 10¹⁵-cm⁻² dose amount needs more than 3h.
 - Poor reliability
 - 50-µm margin

Reference: [1], L. S. Lee, et al., TED 2001. [2] D. D. Tang, et al, IEDM 2003. Slide 7

Outline

- Background
- Motivation
- Conventional Methods to improve inductor quality factor
- Helium-3 Bombardment
- Experimental Results
 - Quality Factor Improvement
 - Reliability
 - VCO Phase Noise Improvement
- Conclusion

Why Helium-3?

Method	Reliability	Cost	Performance
Thick metal ^[1]	Good	Fair	Good (thickness limitation)
PPI ^[2]	Good	High	Good (Package limitation)
Silicon on Insulator ^[3]	Good	Very High	Fair(failed in high freq.)
Proton ^[4]	Poor	High	Good
Helium-3 (This work)	Good	Fair	Good

Compared to Proton, Helium-3

- higher vacancies generation ability
- higher irradiation efficiency
- High throughput
- less lateral scattering
- less dose amount
- less process cost

Reference: [1], J. R. long, et al., JSSC 1997. [2], C. C. Liu, et al., IEDM 2012. [3], J. H. Kim, et al., RFIC 2003. [4], L. S. Lee, et al., TED 2001.

Helium-3 Bombardment

Improving substrate resistivity

Α

• 500- μ m Al mask is used to protect active devices.

Helium-3 Bombardment (Cont'd)

- Larger vacancy generation per ion at the same flight distance in silicon
- Vacancies/ion of Helium-3 is more than 5~6 times larger than that of proton

Calculated by Transport of ions in matter (TRIM) of a software named Stopping and Range of Ion in Matter (SRIM)

Helium-3 Bombardment (Cont'd)

- Small dose amount
 - For R_{sub} >1k Ω , about 10¹³cm⁻²
- lower cost
 - 10¹³-cm⁻² dose amount needs only 3.7min

CZ-N wafer Boron dopant 1x10¹⁵ atms/cm³

Reference: L. S. Lee, et al., TED, 2001

Substrate Resistivity Profile

- Spreading resistance profiler (SRP) method
- Large dose amount, higher substrate resistivity
- Peaks are correspond to implantation times and depth.
- About 10^{13} cm⁻² dosing twice realizes a $30-\mu$ m high resistivity region above $1k\Omega$. (red line)

Outline

- Background
- Motivation
- Conventional Methods to improve inductor quality factor
- Helium-3 Bombardment
- Experimental Results
 - Quality Factor Improvement
 - Reliability
 - VCO Phase Noise Improvement
- Conclusion

Inductor Implementation

- 180-nm CMOS process
- 6 metal layers
- Measured s-parameter
- Open de-embedding

1250µm

8nH 2nH 1nH

Chip photo

Chip and mask

Inductor Implementation Results

- Q improvement ratios (IR) are 54% for 1-nH inductor.
- Peak frequencies shift to higher while self-resonance frequencies not changed.

Inductor Implementation Results (Cont'd)

• Inductance only has slight change.

Reliability Test

- Ion scattering and mask alignment error
- Reliability criteria of active devices

Cross section

Reliability Test Structure

- Implemented in the same chip with inductors
- Symmetric transistor
 array
- 10-µm pitch
- The irradiated area covered the first two transistors
- Measuring leakage
 current

Measured Leakage Current

Measured Leakage Current (Cont'd)

- Leakage current at V_{gs} equal to 0V
- Leakage current with distance from the mask edge
- 15µm required margin including mask alignment.

VCO Design

- 8-GHz oscillation frequency
- 180-nm CMOS process
- 6 metal layers

Core area: 0.13mm²

Performance Summary

- 8.5dB improvement at almost the same power
- Power consumption decreasing 73%

	w/o ion	w/ ion
VDD (V)	1	1
P_DC (mW)	4.83	4.75
PN (dBc/Hz)	-94	-102.5
f_osc (MHz)	8027	8044

Outline

- Background
- Motivation
- Conventional Methods to improve inductor quality factor
- Helium-3 Bombardment
- Experimental Results
 - Quality Factor Improvement
 - Reliability
 - VCO Phase Noise Improvement
- Conclusion

Conclusions

- Helium-3 bombardment is proposed to create a local semi-insulated substrate of high resistibility.
- Required dose amount is about 1.0x10¹³cm⁻², 100 times smaller than the conventional proton bombardment
- Q can be improved by 58% for a 1-nH Inductor.
- 15-μm placement margin from mask edge is required.
- 8.5-dB phase-noise improvement in the 8-GHz oscillator, 73% power reduction.

Acknowledgements

• This work was partially supported by MIC, SCOPE, and VDEC in collaboration with Cadence Design Systems, Inc., and Agilent Technologies Japan, Ltd.