

WSK: 60GHz WiGig Frequency Synthesizer Using Injection Locked Oscillator

Kenichi Okada Tokyo Institute of Technology

- Motivation
- Phase Noise Requirement for IEEE802.11ad/WiGig
- 60GHz Synthesizer Design
- 60GHz Transceiver
- Conclusion

■ QPSK → 3.52Gbps/ch ■ 16QAM → 7.04Gbps/ch ■ 64QAM → 10.56Gbps/ch

from Clause 21.3.1 (p.443) & Annex E (p.539) in 802.11ad-2012.pdf

- Motivation
- Phase Noise Requirement for IEEE802.11ad/WiGig
 - 60GHz Synthesizer Design
 - 60GHz Transceiver
 - Conclusion

5

-TX EVM=TX SNR(MER)

MCS	Modulat	tion	Data rate [Mb/s]	TX EVM [dB] (spec)
9	π/2-QPSK SC		2502.5	-15
12	π /2-16QAM	SC	4620	-21
17	QPSK	OFDM	2079.00	-13
21	16QAM	OFDM	4504.50	-20
24	64QAM	OFDM	6756.75	-26

SC: single carrier

from Table 21-18, 21-21 (p.472, 477) & Table 21-14, 21-16 (p.461, 469) in 802.11ad-2012.pdf

EVM degradation (TX EVM <-26dB for 64QAM) TX -30dB (EVM-vs-Pout) AM-AM, AM-PM: phase noise: -30dB I/Q mismatch: <-40dB gain/phase flatness: <-40dB RX NF, IIP3:

phase noise:

I/Q mismatch:

gain/phase flatness:

<-40dB (depending on Pin) -30dB <-40dB <-40dB (depending on DBB)

- Phase noise degrades EVM.
- Phase noise becomes larger at millimeterwave for both in-band and out-of-band of PLL.

e.g.
5GHz
$$\rightarrow$$
 60GHz
+21.6dB increase
=20log₁₀(60GHz/5GHz) $\mathcal{L}_{in-band} \propto \left(\frac{f_{osc}}{f_{offset}}\right)^2$

Phase Noise Degradation

9

- Phase noise influence on EVM can be estimated by the following equations.
- Integrated DSB phase noise φ_{RMS}^2 is sometimes integrated from 10kHz to 40MHz due to measurement issue. \rightarrow correct?

$$\varphi_{\rm RMS}^2 = 2 \int_0^{B/2} \mathcal{L}(f) df \cong 2 \int_0^\infty \mathcal{L}(f) df$$

$$TX EVM = \sqrt{\frac{1}{SNR^2} + \varphi_{RMS}^2}$$

Phase Noise for 802.11ac

Phase Noise for 802.11ad

Carrier Tracking at Digital Baseband

A decision-directed PLL used for symboltiming recovery can cancel low-offset phase noise, which is 2^{nd} -order LPF at f_{track} .

IEEE802.11ac standard (OFDM)

Modulation	Code rate	NBPSC	NCBPS	Ndbps	Data rate [Mbps]
QPSK	3/4	2	936	702	195
16-QAM	3/4	4	1872	1404	390
64-QAM	5/6	6	2808	2340	650
256-QAM	5/6	8	3744	3120	866.67

Subcarrier frequency spacing: 0.3125MHz (=160MHz/512) # of data subcarriers=468 (in 501 with 156.5625MHz-BW) TDFT: OFDM IDFT/DFT period (=3.2us) TGI: Guard Interval duration (=0.4us = TDFT/8) R: code rate NBPSC:# coded bits per single carrier NCBPS:# coded bits per symbol (=468*NBPSC) NDBPS:# data bits per symbol (=NCBPS*R) Data rate = NDBPS/(TDFT+TGI) = 0.3125MHz*NDBPS*TDFT/(TDFT+TGI)

MCS	Modulat ion	Code rate	NBPSC	Ncbps	Ndbps	Data rate [Mbps]
17	QPSK	3/4	2	672	504	2079.00
21	16-QAM	13/16	4	1344	1092	4504.50
24	64-QAM	13/16	6	2016	1638	6756.75

Subcarrier frequency spacing: 5.15625MHz # of data subcarriers=336 (in 355 with 1830.5MHz-BW) T_{DFT}: OFDM IDFT/DFT period (=0.194us) T_{GI}: Guard Interval duration (=48.4ns = T_{DFT}/4) R: code rate N_{BPSC}:# coded bits per single carrier N_{CBPS}:# coded bits per symbol (=336*N_{BPSC}) N_{DBPS}:# data bits per symbol (=N_{CBPS}*R) Data rate = N_{DBPS}/(T_{DFT}+T_{GI}) = 5.15625MHz*N_{DBPS}*T_{DFT}/(T_{DFT}+T_{GI})

from Table 21-4 (p.446) & Table 21-14 (p.462) in 802.11ad-2012.pdf

Maximum *f*track?

802.11ac

$$f_{track} < 312.5 \text{ kHz} \times 0.089 = 27.8 \text{ kHz}$$

802.11ad
 $f_{track} < 5156.25 \text{ kHz} \times 0.089 = 458.6 \text{ kHz}$

Phase Noise for 802.11ac

Phase Noise for 802.11ad

WSK: Frequency synthesis for 60-GHz and beyond: architectures and building blocks RFIC2014, Tampa Bay, 1-3 June, 2014 18

$$\varphi_{\text{RMS,eff}}^2 = 2 \int_0^{B/2} \mathcal{L}(f) \left(1 - \frac{1}{1 + \left(\frac{f}{f_{\text{track}}}\right)^4} \right) df$$
$$TX EVM = \sqrt{\frac{1}{SNR^2} + \varphi_{\text{RMS,eff}}^2}$$

B : bandwidth of modulated signal
(B can be infinity for approximation) f_{track} : tracking bandwidth of symbol timing recovery
($f_{\text{track}} < 456.8$ kHz for IEEE802.11ad OFDM)

*K. Okada, et al., JSSC 2011

Requirement for IEEE802.11ad/WiGig QPSK: -83dBc/Hz@1MHz (-15.7dB) 16QAM: -90dBc/Hz@1MHz (-22.7dB) 64QAM: -96dBc/Hz@1MHz (-28.7dB) with *f*track=400kHz & 2.7dB margin

In-band phase noise is not important, but the supply-pushing has to be cared for a TDD operation.

- Motivation
- Phase Noise Requirement for IEEE802.11ad/WiGig
- 60GHz Synthesizer Design
 - 60GHz Transceiver
 - Conclusion

- -96dBc/Hz@1MHz for 64QAM
- 7 carrier frequencies for channel bonding from 58.32GHz to 64.80GHz (10.5%)
- 40-MHz reference clock for sharing other WiFi

60-GHz fundamental oscillation is not a good idea.

30GHz

20GHz

(3)

Frequency Multiplier

90°

60GHz

90[°] hybrid

60GHz

(20GHz x3, 15GHz x4 are OK.)

- for hetero-dyne TRX
- reasonable for PN and FTR

*S. Emami, et al., ISSCC 2011

- 30GHz is a bit high for PN and FTR
- I/Q phase calibration is required.

**C. Marcu, et al., ISSCC 2009

- 60GHz QILO***
- good for PN and FTR

***W. Chan, et al., ISSCC 2008

0°, **180**°

90[°], 270[°]

QILO: Quadrature Injection-Locked Oscillator* *W. Chan, et al., ISSCC 2008 working as a frequency tripler

**K. Okada, et al., ISSCC 2011

60GHz Quadrature LO Design

- 20GHz PLL: 64mW
- 60GHz QILO: 18mW(TX)&15mW(RX)
- QILO frequency range: 58-66GHz

- 59.40GHz 60.48GHz 61.56GHz 62.64GHz 63.72GHz 64.80GHz
- Phase noise improvement by injection locking
 -96.5dBc/Hz @ 1MHz at 61.56GHz

Quadrature ILO

*W. Chan, et al., ISSCC 2008 **A. Musa, et al., JSSC 2011 ***K. Okada, et al., ISSCC 2011, 2012

20GHz VCO

Tail feedback TEG VCO achieves -107dBc/Hz@1MHz

*K. Okada, et al., JSSC 2011

Ref.	REF Freq. (MHz)	Frequency (GHz)	Phase Noise @1MHz	Features	Power (mW)
[1]	100	57.0-66.0	-75dBc/Hz	Direct 60GHz QPLL	78
[2]	203.2	59.6-64.0	-92dBc/Hz	30GHz PLL + hybrid	76
[3]	100	56.4-63.4	-90dBc/Hz	60GHz AD-PLL	48
[4]	36	58.1-65.0	-96dBc/Hz	Sub-harmonic Injection 20GHz PLL + 60GHz QILO	72
[5]	36/40	58-66	-97dBc/Hz	Sub-harmonic Injection 20GHz PLL + 60GHz QILO	79
[6]	36/40	58.3-65.4	-95dBc/Hz	Sub-harmonic Injection 20GHz PLL + 60GHz QILO	33

[1] K. Scheir, *et al.*, ISSCC 2009 [2] C. Marcu, *et al.*, JSSC 2009 [3] W. Wu, *et al.*, ISSCC 2013
[4] W. Deng, *et al.*, JSSC 2013 [5] K. Okada, *et al.*, ISSCC 2014 [6] T. Siriburanon, *et al.*, RFIC 2014

- 60GHz Synthesizer Design
 - 20GHz-to-5GHz ILFD
 - QILO as a phase shifter
 - Sub-sampling PLL

Progressive-mixing ILFD^{*,**}

Divide-by-4 Operation

Divide-by-4 Dividers

	Features	Locking Range (GHz)	Power (mW)	Area (mm ²)
[1]	Direct mixing	22.6-28 (21%)	8.3	0.140
[2]	Direct mixing	31.0-41.0 (27%)	3.3	0.002
[3]	LC Direct mixing	58.5-72.9 (22%)	2.2	0.032
[4]	CML + LC ILFD	13.5-30.5 (77%)	7.3	0.33
[5]	Progressive mixing	13.4-21.3 (31%)	3.9	0.003
[6]	Progressive mixing	15.2-20.4 (24%)	3.1	0.002

[1] A-SSCC 2007 [2] ISSCC 2006 [3] CICC 2012 [4] T-MTT 2011
[5] A. Musa, *et al.*, A-SSCC 2011 [6] T. Siriburanon, *et al.*, ESSCIRC 2013

- 60GHz Synthesizer Design
 - 20GHz-to-5GHz ILFD
 - QILO as a phase shifter
 - Sub-sampling PLL

*W. Chan, et al., ISSCC 2008

Quadrature ILO

This work**

very fine phase shifter.

**K. Okada, et al., ISSCC 2012

Phasor Analysis

(Zi, Zq : tank impedance)

I/Q phase difference can be controlled by Zi and Zq.

I/Q Phase Shift

QILO can be used as a very-fine phase shifter.

Phase Resolution

I/Q gain cal.: RF VGA I/Q phase cal. : QILO with 10-bit DAC

0.1 degree/code (estimated) can be realized.

*S. Kawai, et al., RFIC 2013

- 60GHz Synthesizer Design
 - 20GHz-to-5GHz ILFD
 - QILO as a phase shifter
 - Sub-sampling PLL

Improvement of in-band phase noise

*T. Siriburanon, et al., RFIC 2014 **V. Szortyka, et al., ISSCC 2014

Phase Noise of SS-PLL

@62.64GHz

Phase Noise Comparison

Ref.	REF Freq. (MHz)	Frequency (GHz)	Integrated Jitter (ps)	Phase Noise @10kHz offset	Phase Noise @10MHz offset	Features	Power (mW)
[1]	100	57.0-66.0	1.5	-66 dBc/Hz	-108 dBc/Hz	Direct 60GHz QPLL	78
[2]	203.2	59.6-64.0	2.3	-65 dBc/Hz	-112 dBc/Hz	30GHz PLL + Coupler	76
[3]	100	56.0-62.0	0.94	-71 dBc/Hz	-109 dBc/Hz	60GHz AD-PLL	48
This [6] (normal)	36/40	58.3-65.4	12.0	-40 dBc/Hz	-115 dBc/Hz	Sub-harmonic Injection 20GHz PLL + 60GHz QILO	32.8
This [6] (SS)	36	58.3-65.4	2.1	-69 dBc/Hz	-115 dBc/Hz	Sub-harmonic Injection 20GHz <mark>SS-PLL</mark> + 60GHz QILO	34.2

[1] K. Scheir, *et al.*, ISSCC 2009 [2] C. Marcu, *et al.*, JSSC 2009 [3] W. Wu, et al., ISSCC 2013
[4] W. Deng, et al., JSSC 2013 [5] K. Okada, *et al.*, ISSCC 2014 [6] T. Siriburanon, *et al.*, RFIC 2014

- Motivation
- Phase Noise Requirement for IEEE802.11ad/WiGig
- 60GHz Synthesizer Design
- 60GHz Transceiver
 - Conclusion

Transceiver Block Diagram

64QAM with 10.56Gb/s is achieved for the full 4 channels.

Channel	ch.1 58.32GHz	ch.2 60.48GHz	ch.3 62.64GHz	ch.4 64.80GHz	ch.1-ch.4 bond
Modula- tion		16QAM			
Data rate	10.56Gb/s	10.56Gb/s	10.56Gb/s	10.56Gb/s	28.16Gb/s
Conste- Ilation					***
Spec- trum	0 -10 -20 -30 -40 -50 55.82 58.32 60.82	0 -10 -20 -30 -40 -50 57.98 60.48 62.98	0 -10 -20 -30 -40 -50 60.14 62.64 65.14	0 -10 -20 -30 -40 -50 62.30 64.80 67.30	0 -10 -20 -30 -40 -50 55.56 58.56 61.56 64.56 67.56
TX EVM	-27.1dB	-27.5dB	-28.0dB	-28.8dB	-20.0dB
TX-to-RX EVM	-24.6dB	-23.9dB	-24.4dB	-26.3dB	-17.2dB

WSK: Frequency synthesis for 60-GHz and beyond: architectures and building blocks RFIC2014, Tampa Bay, 1-3 June, 2014 46

WSK: Frequency synthesis for 60-GHz and beyond: architectures and building blocks

MCS9

MCS12

RFIC2014, Tampa Bay, 1-3 June, 2014 47

MCS24

- Phase noise requirement for IEEE802.11ad/WiGig QPSK: -83dBc/Hz@1MHz 16QAM: -90dBc/Hz@1MHz 64QAM: -96dBc/Hz@1MHz
- <20GHz oscillation with a frequency multiplier for good phase noise and wide frequency tuning (58.32-64.80GHz)
- The quadrature injection-locked oscillator can be used as a frequency tripler and phase shifter.
- A 64QAM transceiver is demonstrated.

This work was partially supported by MIC, SCOPE, MEXT, STARC, and VDEC in collaboration with Cadence Design Systems, Inc., and Agilent Technologies Japan, Ltd.

References

- [1] K. Okada, et al., "A 64-QAM 60GHz CMOS Transceiver with 4-Channel Bonding," IEEE ISSCC, pp. 346-347, Feb. 2014.
- [2] K. Okada, et al., "A Full 4-Channel 6.3Gb/s 60GHz Direct-Conversion Transceiver with Low-Power Analog and Digital Baseband Circuitry," IEEE ISSCC, pp. 218-219, Feb. 2012.
- [3] K. Okada, et al., "Full Four-Channel 6.3-Gb/s 60-GHz CMOS Transceiver with Low-Power Analog and Digital Baseband Circuitry," IEEE JSSC, Vol. 48, No. 1, pp.46-65, Jan. 2013.
- [4] K. Okada, et al., "A 60GHz 16QAM/8PSK/QPSK/BPSK Direct-Conversion Transceiver for IEEE 802.15.3c," IEEE ISSCC, pp. 160-161, Feb. 2011.
- [5] K. Okada, et al., "A 60-GHz 16QAM/8PSK/QPSK/BPSK Direct-Conversion Transceiver for IEEE802.15.3c," IEEE JSSC, Vol. 46, No. 12, pp. 2988-3004, Dec. 2011.
- [6] A. Musa, et al., "A Low Phase Noise Quadrature Injection Locked Frequency Synthesizer for MM-Wave Applications," IEEE JSSC, Vol. 46, No. 11, pp. 2635-2649, Nov. 2011.
- [7] W. Deng, et al., "A Sub-harmonic Injection-locked Quadrature Frequency Synthesizer with Frequency Calibration Scheme for Millimeter-wave TDD Transceivers," IEEE JSSC, Vol. 48, No. 7, pp. 1710-1720, July 2013.

References

- [8] S. Kawai, et al., "A Digitally-Calibrated 20Gb/s 60GHz Direct-Conversion Transceiver in 65-nm CMOS," IEEE RFIC Symposium, pp.137-140, June 2013.
- [9] K. Okada, et al., "Full Four-Channel 6.3-Gb/s 60-GHz CMOS Transceiver with Low-Power Analog and Digital Baseband Circuitry," IEEE JSSC, Vol. 48, No. 1, pp.46-65, Jan. 2013.
- [10] T. Siriburanon, *et al.*, "A 60-GHz Sub-Sampling Frequency Synthesizer Using Sub-Harmonic Injection-Locked Quadrature Oscillators," *IEEE RFIC Symposium*, June 2014.
- [11] T. Siriburanon, et al., "A 13.2% Locking-Range Divide-by-6, 3.1mW, ILFD Using Even-Harmonic-Enhanced Direct Injection Technique for Millimeter-Wave PLLs," IEEE ESSCIRC, pp.403-406, Sep. 2013.
- [12] J. R. Pelliccio, H. Bachmann and B. W. Myers, "Phase Noise Effects on OFDM Wireless LAN Performance," APPLIED MICROWAVE & WIRELESS, pp.68-80, 2001.
- [13] F. M. Gardner, "Interpolation in digital modems Part I: Fundamentals," IEEE Trans. Communications, vol. 41, no. 3, pp. 501–507, Mar. 1993.

Cancel in-band phase noise at < *f*_{track}

NCO: Number-Controlled Oscillator LF: Loop Filter PD: Phase Detector