

A Characterization Method of On-Chip Tee-Junction for Millimeter-Wave CMOS Circuit Design

Korkut Kaan Tokgoz, Nurul Fajri, Yuuki Seo, Seitarou Kawai, Kenichi Okada, and Akira Matsuzawa

> Matsuzawa & Okada Lab. Tokyo Institute of Technology, Japan

Outline

□ Background

Motivation

- > Example Millimeter-Wave Amplifier
- Common Characterization Structures
- Issues of Multi-Port Measurements

Proposed Tee-Junction Characterization

- > Method
- Measurement Results
- Application on One-Stage Amplifier
- Conclusion

*57-66 GHz Unlicensed Frequency Band

- 9 GHz Unlicensed band
 - Data rates up to 40 Gbps
- Large atmospheric attenuation
 - Secure Communication
 - **8** Limited Communication Range

An Example Millimeter-Wave Amp.

Several active and passive devices

- This work focuses on Tee-Junction characterization
 - **Three-port passive device**

4

Pursuing Excellence

Common Structures

ΓΠΚ

- Calibration problemDecreased accuracy
- De-embedding
- Unwanted crosstalk and coupling

More structures

Pursuing Excellence

Okada Lab.

Issues of Multi-Port Measurements

Most common VNAs Two-Port

DFour-Port Measurements

Decreased Dynamic Range of Instrumentations*

➤ Two-port→110 to 120 dB Dynamic Range up to 110 GHz

Four-port→80 dB after 67 GHz to 110 GHz

*Agilent Technologies, Network Analyzers' Data Sheets http://www.home.agilent.com/agilent/

6

Pursuing Excellence

ΓΠΚ

Proposed Structures

- Short Structure
- Characterization

Verification

□ Based on two-port measurements □ Up to 110 GHz

ΓΠΚ

Pursuing Excellence

Overview of Method

1) Pad and transmission line modeling

2) De-embedding from short structure

- 3) Performing numerical calculations for model
- 4) Verification with open structure measurement results

8

Pursuina Excellence

ΓΠΚ

Proposed Method – I

- Tee-junction model based on
 - Pre-modeled transmission lines
 - Lumped constants: Z₁ and Z₂

9

Pursuing Excellence

& Okada Lab.

ΓΟΚ

Proposed Method – II

• From the measurement results of;

Measurement Results (1 to 110 GHz)

- Short Structure
- Characterization

Open Structure
Pursuing Excellence

11

Verification

Application on One-Stage Amplifier / 12

Conclusion

>A simple characterization approach

- > Two-port measurements
- Model with transmission lines and lumped constants
- > Z-parameters used for calculations

Model and measurements agree well up to 110 GHz

One-stage amplifier application

Amplifier measurements and simulation model agree well up to around 80 GHz

14 TOKYOTIECH PursuingExcellence

THANK YOU VERY MUCH FOR YOUR ATTENTION!

