Pursuing Excellence

Class-C VCOにおける 雑音感度軽減手法の提案

東京工業大学大学院 理工学研究科 電子物理工学専攻 松澤・岡田研究室 木村 健将

1

・研究背景

報告内容

- ・研究目的
- ・雑音感度の決まり方
- ・提案する感度軽減手法
- ・測定結果と評価

発振器には低位相雑音、低消費電力が要求される

2

ΤΟΚΥΟ ΤΙΞΕΗ

Pursuing Excellence

研究目的

3

2014/10/24

雑音感度の決まり方

<u>・周波数の雑音感度</u>

・容量の雑音感度 短い導通時間で発振させるため 大きなTrが必要。

ΤΟΚΥΟ ΤΙΕΓΗ

Vgbias

Sellence

雑音感度の決まり方

KYLI I IELFI PursuingExcellence

> Matsuzawa & Okada Lab. 🏭 🎆

5

雑音感度の決まり方

各寄生容量のうち、C_{GS}が一番大きく変化する。 他の寄生容量の変化は無視できる。

6

Pursuing Excellence

提案する回路構成

ソース部に Z (R_{TAIL})を挿入する。

ΓΟΚΥ

1

TECH

Pursuing Excellence

2014/10/24

2014/10/24

係数の変化

TOKYD TIECH Pursuing Excellence

9

ΤΟΚΥΟ TECH **Pursuing Excellence**

10

しきい値付近で容量の変化を軽減できる。

チップ写真

65nm CMOS プロセスを使用 VCO Size : 0.057 [mm²]

ΤΟΚΥΟ

PursuingExcellence

2014/10/24

測定結果

2014/10/24

K.Kimura, Tokyo Tech

12

ΤΟΚΥ

10

Pursuing Excellence

性能比較

13

ΤΟΚΥΟ ΤΙΕΓΗ—

						Pursuing Excellence
Ref	PN1M [dBc/Hz]	Freq [GHz]	Power [mW]	FoM [dBc/Hz]	Technology	Topology (LC-only)
[3]	-101 @1MHz	26.7	21	-176.3	65nm CMOS	push-push
[4]	-98 @1MHz	18.7	6	-176	65nm CMOS	PMOS
[5]	-112 @1MHz	19	200	-174.5	0.13μm BiCMOS	Colpitts
[6]	-106 @1MHz	17.9 - 21.2	19.2	-179	65nm CMOS	Tail Capacitive Feedback
This work	-105.5 @1MHz	19.3 - 22.4	8.7	-182.1	65nm CMOS	Class-C & Noise Mitigation

$$FoM = PN - 20 \log_{10} \left(\frac{f_{center}}{f_{offset}} \right) + 10 \log_{10} \left(\frac{P_{DC}}{1 mW} \right)$$

2014/10/24

結論

- ・<u>結論</u>
 - Class-C VCOは、大きなトランジスタの使用が避けられ ず、それが位相雑音劣化の原因になっていた。
 - 提案回路構成では、ソース部に挟んだ抵抗値を調整することで、容量変化の感度を調整することができる。
 - 20GHz帯における従来構成に比べて、3dBの位相雑音 性能改善を達成できた。

- [1] K. Okada, et al., "A Dual-Conduction Class-C VCO for a Low Supply Voltage" IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences; VOL.2012; NO.2; PAGE.506-514; (2012)
- [2] A. Mazzanti and P. Andreani, "Class-C harmonic CMOS VCOs, with a general result on phase noise," *IEEE Journal of Solid-State Circuits*, vol.43, no. 12, pp. 2716-2729, Dec. 2008.
- [3] R. Molave, *et al.*, " A 27-GHz Low-Power Push-Push LC VCO with Wide Tuning Range in 65nm CMOS," IEEE Int. Symp. Circuits and Systems, May 2011, pp.1141-1144.
- [4] G. Zhu, et al., "A Low-Power Wide-Band 20GHz VCO in 65nm CMOS," 5th Global Symposium on Millimeter Waves, May 2012, pp.291-294.
- [5] W. Wang, et al., "A 20GHz VCO and Frequency Doubler for W-band FMCW Radar Applications," IEEE Silicon Monolithic Integrated Circuits in RF Systems, Jan. 2014, pp.104-106.
- [6] A. Musa, et al., "A Low Phase Noise Quadrature Injection Locked Frequency Synthesizer for MM-Wave Applications," IEEE Journal of Solid-State Circuits, vol.46, no.11, pp.2635-2649, Nov. 2011.

2014/10/24

ΓΠΚ

TOKYO TIECH Pursuing Excellence

ご清聴ありがとうございました。

