PursuingExcellence

Novel Design Method for ~GHz DAC & Automated Design Program ~GHz DAコンバータの新設計手法と自動設計

Mitsutoshi Sugawara^{*12}, Kenji Mori¹², Masaya Miyahara¹, Akira Matsuzawa¹ 菅原 光俊^{*12} 盛 健次¹² 宮原 正也¹ 松澤 昭¹ Tokyo Institute of Technology¹, JST CREST² Mar 6, 2014

発表概要

・これまで新たなDACの設計方法と、 自動設計のアイディアを発表してきました

– レイアウト・トリフン (レイアウト最優先設計)

- サブ・ミクロン・スライス構造 (MOM容量、R)
- 自動設計プロトタイプ•プログラム (R-DAC)
- ・今回は、

- MIM容量へ適用し、このタイプでもサブミクロン・ スライスを実現できることを報告

-この設計ナレッジを、いかに自動設計へ応用 したかの報告

Abstract

- We are developing an automated design tool for ~GHz DACs.
- We apply proposed "layout-driven design methodology" into MIM capacitor type DAC. Finally we reached "sub-micron-wide slice structure"
 - We give 1st priority to layout.
- I explain slice-based DAC design knowledge-base, and outline of our prototype automated DAC design program

DAC design schematic example

Novel Measuring-Noise-Suppression and Measurement-Time-Reduction Methodology for ADC/DAC

Pursuing Excellence

Previous DAC design example

5

ΤΟΚΥΟ ΤΙΕΓΗ

Worthless (muda) area in Previous

6

How to cut "muda" by layout-drive design method⁷

No isolations

 Because one of nodes of capacitors is commonly connected with output node

No shields

- Other nodes of capacitors are connected to either +Vref or GND through switches
- No wiring areas rather than above the elements
 - We propose unit capacitor width is adjusted same pitch as switches & logic

Common sources

Our proposed sub-µm slice structure [{]

Reference Pursuing Excellence unit capacitor width is same pitch as switches & logic sub-µm C3a C4e C1a C4h C4a C4b C2a C4c C3b C4d C3c C4f C2b C4g C3d Τ1

> M.Sugawara, K.Mori, S.Lee, M.Miyahara, A.Matsuzawa, "Proposal of layout-driven 1/2.8 size DAC design methodology", Silicon Analog RF study committee by IEICEJ, Nov.2013

Novel Measuring-Noise-Suppression and

Measurement-Time-Reduction Methodology for ADC/DAC

Nov 19, 2013

Proposed MIM type C-DAC layout

Pursuing Excellence

Less than half size of previous

Proposed MIM C-DAC layout w/ logic 1

Pursuing Excellence

Pros

- Smaller size than previous (<1/2)
- Higher speed & lower power consumption
 - Because wires are straight and sub-µm
 - Stray capacitance and stray resistance are significant lower (<1fF) than previous
- Easy for thermometer coding logic
 - In-line with each switch and MIM capacitor
 - Small overhead in addition to binary code
 - Against process variation, less glitch
- No more extra digital wire bundle areas

Element size calculation

Automated design tool development¹⁵

- Proposed "sub-micron slice structure"
 - -is better performance than previous.
 - -is easy to layout.
- Why not to develop automated layout tool ?

Automated tool IO

Inputs :

- Given DAC bit size
- Either C or R, and given unit value or output value
- Conversion speed
- Design rule table from each process technology kit
- Process portability, and at least X axis scalable.
- Evaluation function (area, etc.) to determine final n value
- Best match n or all n cases can be designed.
- Additional switch option for ADC bottom plate injection
- Full automation or semi automation

• Outputs :

- Layout
- Schematics for LVS or manual modification
- DRC, LVS, LPE results if required (basically clean by design) Novel Measuring-Noise-Suppression and Measurement-Time-Reduction Methodology for ADC/DAC

Proposed automated DAC design flow 17 Pursuina Excellence DAC spec design rules Knowledge-based element size calculator transistor, resistor, capacitor sizes Knowledge-based slice layout generator Knowledge-based tile layout/schema generator layout drawing Schematic drawing

Experimental results 1

Manual layout result of **1Gsps 9bit C-DAC** in 33µm × 72µm on 65µm CMOS by using proposed sub-µm slice structure before automated program

CALL STREET		

		na para la parte de la part La parte de la p La parte de la p
	taly i barling at dis the	

Novel Measuring-Noise-Suppression and Measurement-Time-Reduction Methodology for ADC/DAC

ΓΠΚ

Experimental results 2

Automated design result of 9bit R-DAC with revised prototype program 0.04mm² = 46µm x 83µm in 65nm CMOS

BACKUP SLIDES

Proposed method: binary coded C-DAC²¹

Proposed method: scrambled binary 22

Proposed method: thermometer coded²³

Proposed method: scrambled thermometer24

Monotonicity is guaranteed. Better INL

Proposal of layout-driven 1/2.8 size DAC design methodology

Pursuing Excellence

Proposed method: scaling capacitor layout 25

C11

S11_d,

- Scaling capacitor (2uint capacitance value) can be located in same slice except metal wires.
- It makes better match to keep

same^{roposal} of layout-driven 1/2.8 size DAC design methodology

Pursuing Excellence

Proposed method: experimental results⁶

- Our silicon samples' experimental results
 - 12bit DAC in SAR ADC
 - DAC core size: $0.0035mm^2=230\mu m \times 15\mu m$ (65nm) =1/2.8 of our previous design* (90nm)
 - Clock speed 1GHz. +20% higher then previous design*
 - Power consumption <2mW</p>

Proposed method: C+Sw+logic in slice27

Example of capacitor +switches +logic in slice.

Half
 capacitor
 in a slice ;

& Okada Lab.

Proposed method: R-DAC schematic

Apply to R-2R + segment 9bit DAC

- 2R resistor based
- R + switches + DFF + thermometer coder

Total 3 pieces for R-2R

Total 63 pieces for thermometer code. Actual positions can be scrambled. 28

Pursuing Excellence

& Okada Lab. 🛓 🏣

Proposed design method 1

- A required accuracy of unit resistor is calculated as m/2^{b-n}, where m is margin
- Its standard deviation σ is given as σ=pelgrom_coef/sqrt(L*W).
 m/2^{b-n}=k*pelgrom_coef/sqrt(L*W)
 (1)
- $R = \rho_s (L + \Delta L)/(W + \Delta W) + 2R_c$ $R \sim \rho_s * L/W + 2R_c$

Proposal of layout-driven 1/2.8 size DAC design methodology

(2)

(2')

Proposed design method 2

• Where

- b: total DAC bit (given)
 n: bit of segment portion (variable)
 B: unit resistor value (given)
 - R: unit resistor value (given)
- -m=1/4 (default)
 - k=3 or 4 (default)
- -pelgrom_coef (from PDK)
 - ρ_s (from PDK) Δ L (from PDK) Δ W (from PDK)
 - R_c (from PDK)

Proposed design method 3

- Hence,
 - W=(k*ρ_s/m)2^{b-n}sqrt(pelgrom_coef/R) (3)
 - If W<W_{min}(in PDK) then W=W_{min}
- L=(R-2R_c)(W- Δ W)/ ρ_s + Δ L If L<L_{min}(in PDK) then L=L_{min} recalculate W

Proposal of layout-driven 1/2.8 size DAC design methodology

(4)