Pursuing Excellence

High-Q Inductor Modeling on Locally Semi-Insulated Si CMOS Substrate by Helium-3 Bombardment

<u>Ning Li¹, Kenichi Okada¹, Takeshi Inoue², Takuichi Hirano¹, Hitoshi Sakane², and Akira Matsuzawa¹</u>

¹ Tokyo Institute of Technology ² S.H.I.Examination & Inspection,Ltd

2014/12/5

Outline

UKYD TIECH PursuingExcellence

Background

- Motivation
- Conventional methods to improve inductor quality factor
- Helium-3 bombardment
- Simulation and experimental results
- Inductor modeling
- Conclusions

Background

- CMOS on-chip inductors are indispensable for RF circuits.
 > High integration
 > No need for 50-Ω interface
 > VCOs, LNAs, PAs, etc
- RF circuits suffer from the poor performance.
 - ≻Thin metal line
 - >Low substrate resistivity less than 10Ω ·cm
 - ➢Q is around ten for on-chip inductor.

Inductor Loss Mechanisms

- Losses by currents in metal coil
 - Ohmic loss, skin effect, proximity effect
 - Improved by using thick metal

Substrate loss

Eddy currents in substrate

$$Q(\omega) \cong \frac{\omega L}{R}$$

- Q: quality factor ω: frequency in radius
- L: inductance
- R: parasitic resistance

Ref.: Bunch, IEEE Microwave magazine June 2002.

Improve quality factor of on-chip inductors by decreasing silicon substrate loss

Ensure circuits working well No damage on active devices

Conventional Methods to Improve Q

Post-passivation interconnect (PPI)

Proton bombardment

ΓΠΚΥΠ

Conv. Meth. to Improve Q (Cont'd)

Post-passivation interconnect (PPI)

- > limited to wafer level packaging (WLP)
- > Large parasitic from the high aspect ratio via (HAR vi)

Ref.: [1], C. C. Liu et al., IEDM 323, 2012. [2], G. J. Carchon, et al., MTT 2004

ΓΠΚ

Pursuing Excellence

Ref.: [1], L. S. Lee, et al., TED 2001. [2] D. D. Tang, et al, IEDM 2003.

Outline

TOKYO TIECH PursuingExcellence

Background

- Motivation
- Conventional Methods to improve inductor quality factor

Helium-3 Bombardment

- Simulation and experimental results
- Inductor modeling
- Conclusions

Why Helium-3?

ΟΚΥΟΤΕΕΗ

Method	Reliability	Cost	Q improvement
Thick metal ^[1]	Good	Fair	Good (thickness limitation)
PPI ^[2]	Good	High	Good (Package limitation)
Silicon on Insulator ^[3]	Good	Very High	Fair(failed in high freq.)
Proton ^[4]	Poor	High	Good
Helium-3 (This work)	Good	Fair	Good

Compared to Proton, Helium-3

- higher vacancies generation ability
- higher irradiation efficiency
- high throughput
- less lateral scattering
- Iess dose
- less process cost

Ref.: [1], J. R. long, et al., JSSC 1997. [2], C. C. Liu, et al., IEDM 2012. [3], J. H. Kim, et al., RFIC 2003. [4], L. S. Lee, et al., TED 2001.

Helium-3 Bombardment

Improving substrate resistivity 500-μm AI mask is used to protect active devices.

Matsuzawa & Okada Lab.

ΓΠΚ

Helium-3 Bombardment (Cont'd)

イオン照射手順及びウエハ搬送設備

ΓΟΚΥΟ ΤΙΞΕΗ

CONFIDENTIAL

ウエハは自動 搬送され、1枚づつ 照射される

1バッチ最大139枚

ウエハ搬送装置

S.H.I. Examination&Inspection, Ltd. Business Development Dept.

SHIEI

generation per ion at the same flight distance in silicon

Larger vacancy

- Vacancies/ion of Helium-3 is more than 5~6 times larger than that of proton
- 300 ³He²⁺ 'acancies/lon 250 (This work) 200 150 100 Proton 50 0 200 300 400 500 0 100 Flight Distance in Si [µm]

Calculated by Transport of ions in matter (TRIM) of a software named Stopping and Range of Ion in Matter (SRIM)

350

Vacancy Generation per Ion

Resistivity

Small dose

> For R_{sub} >1k Ω , about 10¹³cm⁻²

Iower cost

> 10¹³-cm⁻² dose needs only 3.7min

CZ-N wafer Boron dopant 1x10¹⁵ atms/cm³

ΓΠ

Ref.: L. S. Lee, et al., TED, 2001

Substrate Resistivity Profile

- Spreading resistance profiler (SRP) method
- Larger dose, higher substrate resistivity
- Peaks are correspond to implantation times and depth.
- About 10¹³cm⁻² dosing twice realizes a 30-µm high resistivity region above 1kΩ. (red line)

Cond	Total time [s]	Target irradiation depth [µm]	Total dose [cm ⁻²]
#1	444	15, 30	2.0 x10 ¹³
#2	332	15, 30, 45	1.5 x10 ¹³
#3	66	15, 30, 45	3.0 x10 ¹²

Outline

Background

Motivation

- Conventional Methods to improve inductor quality factor
- Helium-3 Bombardment
- Simulation and experimental results
- Inductor modeling
- Conclusions

Inductor EM Simulation

- 2-nH inductor
- Two-port
- Open de-embedding
- the 100-µm depth Helium-3 bombardment region
- Above 1-kΩ-cm substrate resistivity

ΓΠΚΥΠ

Inductor EM Simulation Results

Specific absorption rate (SAR)

[x10⁵ W/kg]

ΓΟΚ

Pursuing Excellence

(b) w/ ion implantation

Inductor EM Simulation Results (Cont'd) 18

Q_{peak} improved by 23% from 13.5 (without / bombardment) to 16.1 (with bombardment).

Pursuing Excellence

Inductor Implementation

- 180-nm CMOS process
- 6 metal layers
- Open de-embedding

Chip photo

ΤΟΚ

Chip and mask

19

Pursuing Excellence

Inductor Implementation Results

Q improvement ratios (IR) are 54% for 1-nH inductor.
 Peak shifts to higher frequency while self-resonance frequency does not change.

Inductor Implementation Results (Cont'd) 21

Inductance only has slight change.

Outline

TOKYD TIECH Pursuing Excellence

Background

Motivation

- Conventional Methods to improve inductor quality factor
- Helium-3 Bombardment
- Simulation and experimental results
- Inductor modeling
- Conclusions

Inductor Model

- Standard equivalent circuit for easily modeling
- S-parameter fitting

Inductor Model (Cont'd)

Good match for Q is realized.

Inductor Model (Cont'd)

Good match for inductance is realized.

Solid lines: model Dash lines: meas.

ΓΠΚ

Extracted Parameters

Substrate resistances (R_{sub1} , R_{sub2} and R_{sub3}) are adjusted for characterizing the quality factor difference.

Parameter	Without He bombardment	With He bombardment	
<i>L</i> ₁ , <i>L</i> ₂ [nH]	2.87		
$R_1, R_2 [\Omega]$	4.19		
<i>L</i> ₁ , <i>L</i> ₂ [nH]	0.56		
$R_1, R_2 [\Omega]$	4.73		
<i>C</i> ₁₂ [fF]	36.40		
<i>C</i> _{ox1} [fF]	23.40		
<i>C</i> _{ox2} [fF]	24.10		
<i>C</i> _{ox3} [fF]	47.50		
$R_{sub1} [\Omega]$	1.00 x 10 ³	7.60 x 10 ³	
$R_{sub2} [\Omega]$	3.04 x 10 ³	16.50 x 10 ³	
<i>R</i> _{sub3} [Ω]	0.75 x 10 ³	5.21 x 10 ³	
C _{sub1} [fF]	5.00		
<i>C</i> _{sub2} [fF]	2.12		
<i>C</i> _{sub3} [fF]	7.12		

Outline

TOKYD TIECH Pursuing Excellence

Background

Motivation

- Conventional Methods to improve inductor quality factor
- Helium-3 Bombardment
- Simulation and experimental results
- Inductor modeling
- Conclusions

Conclusions

- Helium-3 bombardment is proposed to create a local semi-insulated substrate of high resistibility.
- Required dose is about 1.0x10¹³cm⁻², 100 times smaller than the conventional proton bombardment
- **Q** can be improved by 58% for a 1-nH Inductor.
- Accurate models are realized.

This work was partially supported by MIC, SCOPE, and VDEC in collaboration with Cadence Design Systems, Inc., and Agilent Technologies Japan, Ltd.

Thank you for your attention

