Pursuing Excellence

A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD

<u>Teerachot Siriburanon</u>, Tomohiro Ueno, Kento Kimura, Satoshi Kondo, Wei Deng, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

2014/11/6

2014 Asia-Pacific Microwave Conference

Outline

- Background
- Issues and Previous Work
- Proposed 60GHz Frequency Synthesizer
 - -System Architecture
 - -20GHz-to-5GHz Dual-Step-Mixing ILFD
- Experimental Results
- Conclusions

Requirements for 60GHz PLLs

2

Pursuing Excellence

& Okada Lab. 🛓🏬

ΓΟΚ

- Out-of-band phase noise<-90dBc/Hz @1MHz to support 16QAM*
- In-band phase noise should be lowered depending on the bandwidth of carrier-recovery circuitry**
 *.** K. Okada. et al., JSSC 2013

Issues of mm-wave PLLs

- Low out-of-band phase noise by Injection Locking
- -96dBc/Hz at 1MHz at 61.56GHz
- Large power consumption (64mW for 20GHz)
- Does not support channel bonding and all standards
 - Lower REF clk. required to support all standards (N[†])

ΓΟΚ

PLL Noise Transfer Function

• Divide ratio N is no longer contribute to CP/PFD output noise \rightarrow Useful in a system with large division ratio N

X.Gao, et al., JSSC 2009

Proposed 60GHz Frequency Synthesizer

& Okada Lab.

5

20GHz PFD/CP PLL

Frequency Locked Loop ($E_n=1$)/ Phase Locked Loop ($E_n=0$)

• PFD and CP₂ are enabled

2014/11/6

6

ΤΟΚΥΟ ΤΙΞΕΗ

20GHz Sub-sampling PLL

Frequency Locked Loop ($E_n=1$)/ Phase Locked Loop ($E_n=0$)

Dead zone in PFD, SSPD and CP₁ are enabled

20GHz SS-PLL Noise Modelling

TOKYD TIECH Pursuing Excellence

8

High-speed Divider Chains

A technique to increase locking range of highorder-division in ILFDs is necessary

ΓΟΚ

Pursuing Excellence

Conv. Single-Step Injection ILFD 10

Pursuing Excellence

Conv. Single-Step Injection ILFD 11

Pursuing Excellence

Dual-Step Injection ILFD

0° 45° 90° +C 135° -B -D +A +B **-C** 225° 315°_ +D -A 270° 180° 2f_o@0° 2f_o@90° 2f_o @ 270° 2f_o@180° b d С a -INJ +INJ $(-4f_{\rm o})$ $(+4f_{\rm o})$ core core core core

T. Siriburanon, et. al, ESSCIRC 2013

12

IEC -

PursuingExcellence

ΓΟΚΊ

18

Dual-Step Injection ILFD

13

Measured Locking Range

 Can cover required range for 60GHz Applications (19-22GHz)

4

Pursuing Excellence

ΓΟΚ

ILFD Performance Comparison 15

Pursuing Excellence

	Features	Div. Ratio	Locking Range* (GHz)	Locking Range* (%)	Power (mW)	Area (mm²)
[1]	Direct mixing	4	22.6-28	21	8.3	0.140
[2]	Direct mixing	4	6.0-7.6	22	6.8	0.007
[3]	Direct mixing	4	31.0-41.0	27	3.3	0.002
[4]	LC Direct mixing (3 rd harmonic boosting)	4	58.5-72.9	21.9	2.2	0.032
[5]	CML + LC ILFD	4	13.5-30.5	77.3	7.3	0.33
[6]	Dual-Step Mixing	4	13.4-21.3	31	3.9	0.003
This Work	Dual-Step Mixing	4	19-24.2	24	2.65 (with buffers)	0.002

[1] A-SSCC'07 [2] RFIC'04 [3] ISSCC'06 [4] CICC'12 [5] MTT'11 [6] A-SSCC'11

20GHz SS-PLL Measurement

		0.7 mm		
Freq. (GHz)	19.38 - 22.58(15.3%)			
	19.44, 19.80, 20.16,			
Frequencies (GHz)	20.52, 20.88, 21.24,			
	21.60	Circuits		
		PFD+DZ		
Ref. Spurs (dBc)	-58 dBc @ f _{REF}	E 20GHz ILFD CP1		
PN@1MHz(dBc/Hz)	~ -104			
Ref. freq. (MHz)	36/40 (18/20)			
Out Power (dBm)	0 ~ -4	20GHz Class-C		
Total Power (mW)	20.2			
Process	65nm CMOS			

16

PursuingExcellence

Schematic of 60GHz QILO

K. Okada, et al., JSSC 2013

ΓΟΚ

Pursuing Excellence

60GHz Quadrature Injection-Locked Oscillator

60GHz QILO Measurement Summary

Process	65nm CMOS
Supply Voltage (V)	1.2
Tuning Range (GHz)	58.3-65.4
P _{DC} (mW)	14.0
Output Power (dBm)	-10.0

60GHz QILO

18

PursuingExcellence

ΓΠΚΥΠ

Phase Noise Characteristics

19

Pursuing Excellence

& Okada Lab.

ΤΟΚ

At a carrier frequency of 62.64GHz

Performance Comparison

TECH-

ΤΟΚΊ

Pursuing Excellence

Ref.	REF Freq. (MHz)	Frequency (GHz)	Phase Noise @10kHz offset	Phase Noise @10MHz offset	Features	Power (mW)
[1]	100	57.0-66.0	-66 dBc/Hz	-108 dBc/Hz	Direct 60GHz QPLL	78
[2]	203.2	59.6-64.0	-65 dBc/Hz	-112 dBc/Hz	30GHz PLL + Coupler	76
[3]	100	56.0-62.0	-71 dBc/Hz	-109 dBc/Hz	60GHz AD-PLL	48
[4]	40	53.8-63.3	-89 dBc/Hz	-108 dBc/Hz	60GHz SS-QPLL	42
[5]	18	58.1-65.0	-40 dBc/Hz	-117 dBc/Hz	Sub-harmonic Injection 20GHz PLL + 60GHz QILO	72
This Work (normal)	18/20	58.3-65.4	-40 dBc/Hz	-115 dBc/Hz	Sub-harmonic Injection 20GHz PLL + 60GHz QILO	32.8
This (SS)	18/20	58.3-65.4	-69 dBc/Hz	-115 dBc/Hz	Sub-harmonic Injection 20GHz <mark>SS-PLL</mark> + 60GHz QILO	34.2

[1] K. Scheir, et al., ISSCC 2009 [2] C. Marcu, et al., JSSC 2009 [3] W. Wu, et al., ISSCC 2013
[4] V. Szortyka, et al., ISSCC 2014 [5] W. Deng, et al., JSSC 2013

- Low in-band and out-band phase noise have been achieved through sub-sampling and sub-harmonic injection-locked techniques, respectively
- With an assist of a low-power Dual-Step-Mixing ILFD, the proposed 60GHz SS-PLL achieves low power consumption while maintaining good phase noise performance

