

A 0.015-mm² 60-GHz Reconfigurable Wake-Up Receiver by Reusing Multi-Stage LNAs

<u>Rui Wu</u>, Qinghong Bu, Wei Deng, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan,

Outline

- Background
- 60-GHz research field
- Conventional Wake-Up Receivers
- Proposed 60-GHz WuRx
- Circuit design & Measurement results
- Conclusions

Background

60-GHz TRX for Wireless Application

Rendezvous Scheme or Wake-Up RX?

- Omega Min. extra components
- **8** Large latency
- B Waste of power through unnecessary wakeups
- Network synchronization necessary

- Small latency
- No reference clock
- **8 Bulky extra components**
- 8 Higher stand-by power

Conventional WuRxs for 60 GHz (1/2)

8 Large interference at low frequency band

Conventional WuRxs for 60 GHz (2/2)

Proposed 60-GHz Wake-Up Receiver

- No extra bulky components
- Less interference around 60 GHz
- Integrated sensitivity boost function

The Reused Envelope Detector Stage

Sub-Threshold Detector Optimization

The Detailed 4-Stage Single-Ended LNA

PMOS switches with shunt resistors for reused stages

The Detailed System Block Diagram

Equivalent Circuit of the 4-stage LNA

60-GHz LNA operation mode

All switches on minimizes the influence on 60-GHz LNA operation

Equivalent Circuit of the 4-stage LNA

Low-power WuRx mode

Reuse first stage as an sub-threshold envelope detector

Sub-threshold Bias Tuning

Wake-Up Signal Detecting

Transient Waveform of the WuRx

Equivalent Circuit of the 4-stage LNA

Sensitivity-boosted WuRx mode

- Reuse last stage as a sub-threshold envelope detector
- 1st~3rd stage act as a pre-amplifier

Simplified Duty Cycle Scheme

Reduce power consumption

Average Power =
$$\frac{T1 \times P1 + T2 \times P2}{T1 + T2}$$

Die Micro-Photograph

65 nm CMOS technology, 0.015 mm²

Measured S11 of WuRx

Measured S-Parameter of 60-GHz LNA

Measured Spectrum of Received Signal

Measured Spectrum of Received Signal

Performance Comparison

Ref.	Freq.	Area Overhead	Extra Antenna /Switch	Sensitivity	Power
[2]	5.8GHz	0.114mm ^{2*}	Yes	-45dBm	54µW
[3]	60GHz	1.090mm ²	Yes	†	9µW
[4]	0.9GHz	2.886mm ²	Yes	-73dBm	9µW
[5]	0.9GHz	0.360mm ²	Yes	-80dBm	51µW
	2.4GHz			-69dBm	
This work	60GHz	0.015mm ²	No	-46dBm	64µW
				-60dBm	12.7mW

*Estimated from literature

[†]Only noise floor is shown

[2] J. Choi *et al.*, ISSCC 2012 [4] D.-Y. Yoon *et al*., JSSC 2012 [3] T. Wada *et al.*, ESSCIRC 2013 [5] X. Huang *et al.*, ISSCC 2010

- Area-efficient WuRx for 60-GHz TRX by reusing the multi-stage LNA as envelope detectors.
- Area overhead of only 0.015mm²,
- No extra bulky components
- Achieves the sensitivity of –46 dBm and –60 dBm with a static power consumption of 64 μ W and 12.7mW, respectively