A Dual-Step-Mixing ILFD using a Direct Injection Technique for High-Order Division Ratios in 60GHz Applications

Teerachot SIRIBURANON, Wei DENG, Ahmed MUSA, Kenichi OKADA, and Akira MATSUZAWA

Department of Physical Electronics, Tokyo Institute of Technology 2-12-1-S3-27 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan E-mail: tee@ssc.pe.titech.ac.jp

Abstract A wide-locking-range and low-power injection-locked-frequency-divider (ILFD) using direct injection in dual-step mixing is proposed to widen locking range (LR) of divide by 4 and 6 operations. Two main advantages over the previously-reported progressive mixing ILFD are less headroom required and less sensitivity over large injection amplitude. This work achieves the widest LR reported of 4.3GHz for divide-by-6 and 5.7GHz for divide-by-4 operation while consuming 3.1mW without frequency tuning. The divide-by-4 and divide-by-6 operation of this ILFD can cover the required frequency range for 60GHz wireless standards.

Keyword wide-locking-range, low-power, Dual-Step Mixing, Direct Injection, ILFD

1. INTRODUCTION

Due to its smaller size, a ring-based ILFD is more preferable comparing to an LC-based counterpart. However, a technique to increase locking range of a high-divide-ratio ring-based ILFDs is necessary to avoid more power dissipated at higher oscillation speed in mm-wave applications. As shown in Fig.1 (a), and (b), a single-staged divide-by-4 or a divide-by-6 ILFD can directly down-convert mm-wave signals to low enough frequency where low-power digital dividers can operate. Combining a high-divide-ratio inductor-less ILFD in a 60GHz PLL based on push-push [1] or sub-harmonic injection [2] technique, this will significantly help reduce its total power consumption and area.

2. PROPOSED DUAL-STEP-MIXING ILFD

Conventional ILFD based on traditional direct mixing suffers from narrow locking range which is not robust over PVT variations especially for higher division ratios, *i.e.*, 4 or 6. This is because for a division ratio of 6, the injected signal mixes with a weak fifth harmonic at the output nodes resulting in a narrow locking range.

By first utilizing stronger harmonics to mix with the injected signals in a progressive mixing operation, locking range of higher division ratios can be enhanced [3]. An additional cascoded tail transistor is required in order to allow progressive mixing operation as shown in Fig.2. Due to the PMOS loads, an intrinsic free-running frequency of an oscillator is varied by large injection amplitudes applied at the gate of cascoded tail transistors resulting in asymmetrical locking range in Fig.2.

In this work, a dual-step mixing operation which is more suitable for mm-wave applications is utilized. Fig.3 shows the topology for the proposed ILFD which is composed of 4 resistor-loaded delay cells. Free running frequency of this ILFD can be tuned through current tuning reducing the effect from large injection amplitude. An NMOS switch is placed across the common-nodes of the first and third delay cells acting as a primary mixer which inject the signal to the even-harmonic oscillator. This results in less voltage headroom required. For a divide-by-6 operation, the injected signal is first mixed with a stronger fourth harmonic that is naturally exists in a common-node of ring oscillator resulting into a frequency near second harmonic at the primary mixer. Then, it further mixes with the fundamental signal through a built-in single-balanced mixer resulting into a frequency near fundamental which pull the free-running frequency of an ILFD and lock to the injected signal. Same explanation can be applied for a divide-by-4 operation but first mix with second harmonic at the primary mixer.

3. MEASUREMENT RESULTS

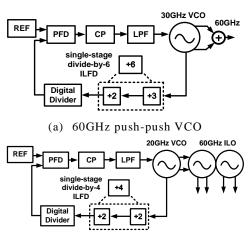
The proposed ILFD is fabricated in a 65nm CMOS process shown in Fig.4. It achieves the widest locking range of 4.5GHz (13%) and 6.6GHz (28%) for divide-by-6 and divide-by-4 operations while consuming 3.6 and 4.2mW, respectively. Both operations cover the required frequency range for 60GHz wireless standards as shown in Fig.5.

4. CONCLUSION

The proposed ILFD achieves the widest locking range reported for a divide-by-6 operation and competitively wide locking range for divide-by-4 operation. It is suitable to be integrated in push-push or sub-harmonic injection locked 60GHz PLLs.

REFERENCE

[1] K. Okada, et al., "Full Four-Channel 6.3-Gb/s 60-GHz CMOS Transceiver With Low-Power Analog and Digital Baseband Circuitry," *IEEE J. Solid-State Circuits*, vol. 48, no. 1, pp. 46-65, Jan. 2013.


[2] T. Tsukizawa, et al., "A Fully Integrated 60GHz CMOS Transceiver Chipset Based on WiGig/IEEE802.11ad with Built-In Self Calibration for Mobile Applications," *IEEE* International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, pp.230-231, Feb. 2013.

[3] A. Musa, et al., "A 20GHz ILFD with Locking Range of 31% for Divide-by-4 and 15% for Divide-by-8 Using Progressive Mixing", in *Proceedings of IEEE Asian Solid-State Circuits Conference*, pp. 85-88,Nov. 2011.

[4] T. Siriburanon, *et al.*, "A 13.2% Locking-Range Divide-by-6, 3.1mW, ILFD using Even-Harmonic=enhanced Direct Injection Technique for Millimeter-Wave PLLs", *IEEE European Solid-State Circuits Conference*, pp. 403-406, Sep. 2013

[5] Y.-T. Chen, *et al.*, "Low-Voltage K-Band Divide-by-3 Injection-Locked Frequency Divider With Floating-Source Diffential Injector,"*IEEE Trans. Microw. Theory Tech.*, vol. 60, no. 1, pp. 60-67, Jan. 2012.

[6] L. Wang, et al., "A 0.13-μm HBT Divide-by-6 Injection-Locked Frequency Divider", in Proceedings of IEEE Asian Solid-State Circuits Conference, pp. 97-100, Nov. 2011.
[7] M. Acar, et al., "A wide-band CMOS injection-locked frequency divider," in IEEE Radio Frequency Integrated Circuits Symposium, Digest of Papers, pp. 211-214, Jun. 2004.

(b) Sub-harmonic injection based on 20GHz PLL Fig.1. 60GHz frequency synthesizers proposed in [1],[2]

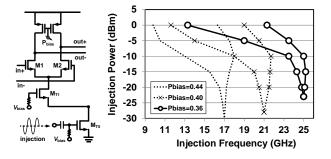
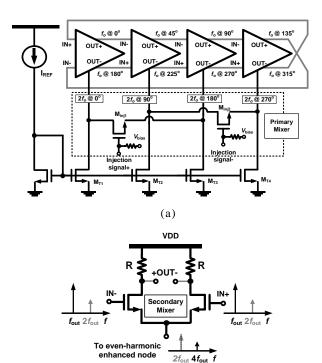



Fig.2 Asymmetrical locking range caused by large injection amplitude in an ILFD proposed in (2)

 TABLE I
 Performance comparison with divide-by-6 and divide-by-3 ILFDs

	Features	Div. Ratio	Locking Range* (GHz)	Locking Range* (%)	Power (mW)	FoM (%/mW)	Area (mm²)
[5]	Direct mixing	3	21.7-24.9	13.7	8.3	1.7	0.140
[6]	Direct mixing	6	141.0-144.3	2.7	14.0	0.2	1.160
[7]	Direct mixing	6	10.2-11.3	11.0	6.8	1.6	0.007
This	Dual-Step Direct Injection	6	28.5-32.8	13.4	3.6	3.7	0.002

*without tuning mechanisms, $FoM_1 = (\% \text{ Lock Range})/(mW \text{ Power})$

(b) Fig.3. Detailed circuit schematic of the proposed (a) dual-step-mixing ILFD and (b) its delay cell

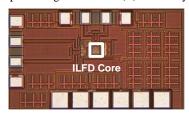


Fig.4. Chip Micrograph of the proposed ILFD

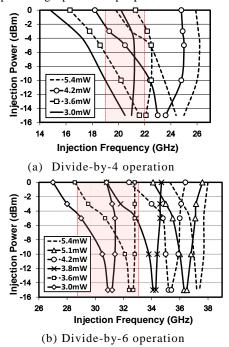


Fig.5. Measured locking range of the proposed ILFD