

光・無線通信の超高速化に向けた

高周波アナログ・デジタル集積回路技術

松澤 昭

東京工業大学 大学院理工学研究科

- ・ 通信・記録システム技術の発展と集積回路技術
- · 60GHz CMOS トランシーバの開発
- · 60GHz CMOS 高周波回路設計のポイント
- ・超高速・低電力ADCの開発

通信・記録システム技術の発展と

集積回路技術

アナログ・デジタル混載SoC

高性能アナログ回路やADCを含むDVDの全機能を世界で初めて Pursuing Excellence ワンチップに集積。アナログ・デジタル混載SoC時代の幕開けとなった。

アナログ・デジタル混載SoC技術により高性能化と低コスト化を同時に実現できる。

5

ΤΟΚΥΟ ΤΕΕΗ

微細化の進展

現在32nm CMOSが量産中, 7nm程度までは計画されている

JEITA, "IC Guide Book 2より

6

Pursuing Excellence

ΤΟΚΥΟ

性能の推移

TOKYO TIECH Pursuing Excellence

トランジスタ数は最大数10億トランジスタ で今後も増加する

2013/3/12

STARC アドバンスト講座 低消費電力化技術セミナー (東大:平本教授)2012.03.13より

ゲート遅延時間と消費電力推移

FinFETなどのデバイスの革新により今後も消費電力は低減可能と予測"suing Excellence 遅延時間はそれほどの改善は期待できないかもしれない

9

Matsuzawa

Okada Lab.

STARC アドバンスト講座 低消費電力化技術セミナー (東大:平本教授)2012.03.13より

60GHz CMOS トランシーバの開発

利用モデル

ギガビット機器間データ伝送の実現 瞬時のデータトランスファーを狙い,小型,低電力

機器イメージ

アンテナ内蔵基板にRFとベースバンドLSIが実装される。

背景:無線通信量の急増

スマホの通信量は従来携帯の20倍程度に増加する

13

TECH

Pursuing Excellence

ΤΟΚΥ

Π

ミリ波ネットワークの将来イメージ 14 TOKYO TIECH

Pursuing Excellence

ミリ波は機器間でのデータ転送に使用されるだけでなく、WiFi, WiMaxの基地局間 同士を接続するとともに「ミリ波ゲート」を通過する間に必要なデータを転送できる

CORDI-D

11

2013/3/12

60GH帯通信用モジュール

大容量データ授受用 60GHzトランシーバー (待ち受け中)

帯域約1.8GHz, 4チャンネル

・チャネル内の周波数特性の均一化 ・57GHz~66GHzまでの周波数帯域での特性均一化

各種コンテンツの転送に要する時間

ミリ波を用いれば無線でも約10秒でDVDのコンテンツが転送可能

ΤΟΚΥΟ ΤΕCΗ

Pursuing Excellence

従来のミリ波システム

2006年にはGaAs技術を用いて60GHzのモデュールが完成していたででで

しかしながら, 更なるコストダウンが必要だった他, ベースバンドチップが無く, データ伝送速度は50Mbps程度であった。 単体デバイスがいくら高速でも, 信号処理技術が伴わないとだめ。

18

ΤΟΚΥΟ ΤΕΕΗ

データレート≈N×BW

QPSK (N=2), BW=1.7GHz→ DR=3.4Gbps これまでの実績 16QAM (N=4), BW=1.7GHz → DR=6.8Gbps 16QAM (N=4), BW=4.0GHz → DR=16Gbps

今後の計画 64QAM (N=6), BW=4.0GHz → DR=24Gbps 64QAM (N=6), BW=8.0GHz → DR=48Gbps

技術課題と対策

広帯域化:RF回路とBB回路の広帯域化,ゲインフラット化,ADCの高速化 高SNR:アンテナ利得の向上,フロアノイズの減少,ADC分解能の向上 低位相ノイズ:インジェクションロック技術の向上,インダクタのQの向上

- ダイレクトコンバージョン型による小型・低消費電力化
- 低消費電力ADC, DAC

アンテナ内蔵パッケージの開発 22 ΤΟΚΥΟ ΤΕΕ **Pursuing Excellence**

16.3mm x 14.4mm

[3] R. Suga, et al., EuMC 2011

23 TOKYOTIECH PursuingExcellence

RF貫通試験 (16QAM)

16QAMでもきれいなコンステレーションが得られた

IUK	
	Pursuing Excellence
-	TursungExcentinee

Channel/ Carrier freq.	ch.1 ch.2 58.32GHz 60.48GHz		ch.3 62.64GHz	ch.4 64.80GHz	ch.1-ch.4 Max rate	
Modulation			16QAM			
Constellation	光 书 子 点 彩 子 子 法 书 书 书 书 书 书 书 书	2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	唐 单 章 章 章 章 章 章 章 章 章 章 章	1. 2. 2. 2. 2. 2. 2. 2. 3. 2. 2. 4. 2. 3. 4. 4. 3. 4. 4.	4 8 8 4 8 8 8 4 8 8 8 4 8 8 8 4 8 8 9 9	
Spectrum	10 -10 -20 -30 -40 -55.08 58.32 61.56	10 -10 -20 -30 -40 57.24 60.48 63.72	10 -10 -20 -30 -40 59.40 62.64 65.88	10 0 -10 -20 -30 -40 -56 64.80 68.04	10 -10 -20 -30 -40 59.40 62.64 65.88	
Back-off	4.4dB	4.6dB	5.0dB	5.7dB	5.0dB	
Data rate*	7.0Gb/s 7.0Gb/s		7.0Gb/s 7.0Gb/s		10.0Gb/s (ch.3)	
EVM	-23.0dB	-23.0dB	-23.3dB -22.8dB		-23.0dB (ch.3)	
Distance**	0.3m 0.5m		0.5m	0.3m	>0.01m (ch.3)	

*The roll-off factor is 0.25. The bandwidth is 2.16GHz except for Max rate.

**Maximum distance within a BER of 10-3. The 6-dBi antenna in the package is used. 2013/3/12

RF 性能のまとめ

Тх		Rx	
CG	18dB	CG	23dB (high-gain mode)
P _{1dB}	9.5dBm		9dB (low-gain mode)
P _{sat}	5.6dBm	NF	< 4.9dB (high-gain mode)
		IIP3	-14dBm (low-gain mode)

LO	
Injection PLL	19.44, 20.16, 20.88, 21.60GHz
Ref. spur	<-58dBc @ 20.16GHz
Locking range	1.4GHz
Quadrature ILO	58.0-64.7GHz (free-run)
Phase noise@1MHz-offset	< -95dBc/Hz (every channel)

性能比較(RF+BB)

世界初の4チャネル全ての送受が可能なRF+BBチップ^{ursuing Excellence} 16QAMを用いて6.3Gbpsの超高速伝送を低電力で実現

	Integration	Data rate (16QAM)	Ch.	P _{DC} (Tx/Rx)
CEA-LETI [5]	RF (Hetero)	3.8Gb/s	-	1,357mW / 454mW
SiBeam [6]	RF (Hetero)	3.8Gb/s	Ch.1-2	1,820mW / 1,250mW
Tokyo Tech (This work)	RF (Direct) +analog BB +digital BB	RF+BB: 6.3Gb/s	Ch.1-4	RF:319mW / 223mW BB:196mW / 398mW

 [1] K. Okada, et al., ISSCC 2011 [4] H. Asada, et al., A-SSCC 2011 [5] A. Siligaris, et al., ISSCC 2011 [6] S. Emami, et al., ISSCC 2011 [12] C. Marcu, et al., ISSCC 2009

ΤΟΚΥΟ

世界最高のデータレート(16Gbps)を実現。

Constellation	• • 9506 points	• • • • • • • • • • • • 19912 points	13502 points	42024 points
Modulation	QPSK	16QAM	QPSK	16QAM
Symbol rate	1.76GS/s	1.76GS/s	5.0GS/s	4.0GS/s
Data rate	3.52Gb/s	7.04Gb/s	10.0Gb/s	16.0Gb/s
EVM (withDFE)	EVM withDFE) -30.5dB		-15.2dB	-16.1dB

60GHz CMOS RF回路設計のポイント

CMOSの微細化とRF回路性能

RF回路の基本性能(利得, ノイズ)は最終的にはデバイスのf_T, f_{max}で決まる^{Excellence} 微細化によりCMOSのf_T, f_{max}は今後も向上する

NF<4dB at 60GHz はCMOSで達成している

- O Bulk CMOS
- ▲ Ultra-Thin-Body Fully-Depleted (UTB FD) SOI
- Multi-Gate MOSFETs

2013/3/12

ITRS RFAMS 2011.

30

ΓΟΚΥΟ

増幅器設計

増幅器設計は、サイズ設定、バイアス設定、インピーダンスマッチング デカップリング設計につきる

31

Matsuzawa & Okada Lab.

ΤΟΚΥΟ

ゲインフラットネス

32

ΤΟΚΥΟ ΤΕΓ

Pursuing Excellence

60GHz帯LNA

4dBのNF, 17GHzの広帯域増幅を60GHzで達成

33 TOKYO FIECH Pursuing Excellence

トランスミッションライン技術をベースにした、インピーダンス整合回路、 トランス、バルン、デカップリング容量を開発した

Transformer

スルーオンリー法

パッドと付きだし部分を測定 プローブ間干渉により不正確

Thru (short line) structure

Pad model

Zр

Matsuzawa & Okada Lab.

L-2L 法

L (200um)と2L (400um)の伝送線路で測定

A. M. Mangan, et al., IEEE Trans. on Electron Devices, vol. 53, no. 2, pp.235-241, Feb. 2006 N. Takayama, et al., IEEE Asia-Pacific Microwave Conference (APMC), Singapore, Dec. 2009.

伝送線路の特性インピーダンスを2つの方法で評価 スルーオンリー法では本来線路長に依らない特性インピーダンスが 線路長により異なっている。L-2L法では一致している。→ L-2L法が精度が高い

37

ΤΟΚΥ

16QAMを実現するには-90dBc/Hz@1MHz以下の位相ノイズが必要

それまでの60GHz帯直交発振器は -76dBc/Hz@1MHz程度

K. Scheir, et al., ISSCC, pp. 494-495, Feb. 2009.

低位相ノイズ直交VCO

Matsuzawa 👘 & Okada Lab.

Technology	40nm 1P8M	パルスの分周→ 発振周波数の制御						
rechnology	CMOS		Free-running		Locked			
Operating frequency	133.3GHz – 151.3GHz	<mark>∦ Agilent</mark> 08:47:11 M Ref −40 dBm Peak	ay 9, 2012 Ext Mix Ext Mix	48.622 GHz -46.31 dBm Peak	08:45:22 May 9, 2012 m Ext Mix	Mkr1 50,000 GHz 40,87 dBm		
Phase noise	-135.6dBc/Hz @1MHz offset	6 6 dB/	System, Alignments, Align Now, Signal Ident On,	All required dB/		System, Alignments, Align Now, All required Signal Ident Un, Amptd Uncal		
Power dissipation	12mW @V _{DD} =1.6V	NI 52 53 FS		H1 52 53 FS				
Circuit size	$8.8 imes 5.3 \mu m^2$			Center 50 (Span 1 GHz		
BiasT		Center 48.62 GHz •Res BW 1 MHz	•VBW 10 kHz Sweep 81.25 m	Span 1 GHz •Res BW 1 1 Is (401 pts)	MHz ●VBW 10) kHz Sweep 81.25 ms (401 pts)		
$\stackrel{\text{inj}}{\underline{I}} \stackrel{\text{d}}{\underline{I}} \stackrel{\text{d}}{\underline{I}$	$\begin{array}{c c} \underline{\mathbf{P}} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		-20 -40 -60 -80 -100 -100 -120 -120 -140 -160	-135.6c	Locked of Bc/Hz	output		
M. Fujis	shima, et al., S	」 SDM 2012	1k	10k Offset fre	100k equency [Hz	1M 10M Matsuzawa		

400GHzを超えるCMOS 発振器

高調波を使用できるのでfmaxを超える発振が可能である。

410 GHz

E. Seok, *et al.*, ISSCC 2008.

45nm CMOS Push-push Oscillator 205GHz oscillation with 410GHz harmonic output. 11mA @ 1.5V

O. Momeni, *et al.*, JSSC 2011.

486 GHz

65nm CMOS 486GHz using Triple-Push oscillation -7.9dBm from 61mW Pd.

43

Pursuing Excellence

ΤΟΚ

110GHzまでの最新の高周波評価装置が揃っている

2011年1月

超高速·低電力ADC

ミリ波ベースバンド用

高速信号伝送とADC性能

伝送回路のデータレートはADCの分解能Nと変換周波数f_sの積に比例する

$$D_{rate} \approx N \cdot f_s$$
 N: 分解能
f_s: 標本化周波数

ΤΟΚ

Pursuing Excellence

& Okada Lab.

ノイズがADCの量子化ノイズで決まると仮定した場合

38GHz 1Gbps 固定無線システムを共同開発した

Compatible with Gbit Ethernet Hole system is integrated with planar antenna

日本無線との共同開発

ΤΟΚΥΟ

48

Pursuing Excellence

Matsuzawa & Okada Lab.

新方式の ADC

超高速多値伝送に最適の新変換方式の10bit ADCを開発

Matsuzawa

& Okada Lab. 🕼 🎞 📰

51

2013/3/12

Matsuzawa 👔 & Okada Lab.

フラッシュADC

フラッシュ型ADCは分解能が5~7ビットでGHzを超える用途では 未だ最適な変換方式である。 実効的分解能 (ENOB)は比較器のミスマッチ電圧で決まる。

53

Pursuing Excellence

ΤΟΚΥΟ

ADCの性能と消費電力

54

ΤΟΚΥ

Matsuzawa

& Okada Lab.

5~7ビット程度の分解能では単体でも数GHzの変換が可能 Pursuing Excellence 10GHz以上の場合はインターリーブになるが,消費電力が増大する。10ビット以上の高分解能ADCは1GHz以上の変換は容易ではない。

ダイナミック比較器

貫通電流が流れず,高速(4GHz程度までは動作可能)かつ低電力な Pursuing Excellence ダイナミック型比較器を提案。定常電流が流れず低電力。 容量によりオフセット電圧の補償が可能(1mV程度は可能)でかつ低ノイズ。

55

ΤΟΚΥΟ

トランジスタサイズを減少させて消費エネルギーを下げ、ミスマッチ電圧の増大は デジタルミスマッチ補償技術により抑制して高精度化する

オフセット補償結果

59

ΤΟΚ

60GHz トランシーバ用フラッシュADC

M. Miyahara and A. Matsuzawa, et al., RFIC 2012.

Ich

S/P(1/8)

Reference

CMP x 33

B ch

0.25 mm

CMP x 33

A ch

ΤΠΚ

Qch

60

Pursuing Excellence

Matsuzawa & Okada Lab.

*single channel inc. S/P

ADC性能の比較

60GHz トランシーバ用として世界最小レベルの消費電力とコア面積を達成

	Architecture	Cal.	fs [GS/s]	SNDR [dB]	Power [mW]	FoM [fJ/-c.s.]	Process [nm]	Area [mm ²]
[1]	Flash	-	3.5	31.2	98	946	90	0.149
[2]	SAR	Internal	2.5	34.0	50	489	45	1
[3]	Folding	Internal	2.7	33.6	50	474	90	0.36
[4]	Pipeline, Folding	External	2.2	31.1	2.6	40	40	0.03
[5]	Flash	Internal	2.88	27.8	36	600	65	0.25
This work	Flash	Internal	2.3	26.1	12	316	40	0.06

[1] K. Deguchi, et al., VLSI Circuits 2007 [2] E. Alpman, et al., ISSCC 2009

[3] Y. Nakajima, et al., VLSI Circuits 2007 [4] B. Verbruggen, et al., ISSCC 2010

[5] T. Ito, et al., A-SSCC 2010

ΤΟΚΥΟ

Pursuina Excellence

まとめ

- 通信・記録システムの技術の方向性
 - 多値化によるデータレート向上への期待
 - SoCでADC+DSPを実現することが実用化上重要
 - 集積回路技術はまだまだ進化。高集積化・低電力化が期待される。
- 60GHz帯CMOSトランシーバの開発
 - 瞬時の大容量データ転送への期待
 - CMOS微細化によるRF性能の向上と, RF/BB一体集積化技術
 - 60GHz 高周波回路, 16QAMなどの多値伝送と, 数GHzの広帯域化技術
 - インジェクションロック技術などによる低位相ノイズ技術
 - 世界最高速の7Gbps, 16Gbps(RFのみ),低消費電力(500mW; RF+BB)の60GHz帯CMOSトランシーバを実現
- 超高速·低電力ADC技術
 - 面積縮小・低電力・高速動作を実現するダイナミックアナログ回路技術
 - 微細化による精度劣化を補償するデジタルアシスト技術

2013/3/12

ΓΟΚ ΥΟ

Pursuina Excellence