ミリ波通信の実用化に向けた RF・AD混載集積回路技術

松澤 昭

東京工業大学 大学院理工学研究科

内容

- ・はじめに
- · 60GHz CMOS トランシーバの概要
- · 60GHz CMOS RF回路設計のポイント
- ·超高速·低電力ADC
- ・38GHz アウトドアシステム
- ・東エ大ミリ波モデルネットワーク

ΤΟΚΥ

はじめに

ミリ波システムと集積回路開発の背景

総務省ミリ波プロジェクト

屋内(--10m) および屋外(1km~4km)のミリ波システム およびSoCの開発によりミリ波利用を促進する

FY2007-FY2011

1. 60GHz, Indoor 3-10 Gbps -- 10m 2. 38GHz, Outdoor 0.6-1.0Gbps 1km – 4km

ΤΟΚ

背景:無線通信量の急増

スマホの通信量は従来携帯の20倍程度に増加する

	齊 新 剧	2012年(平成24年)1月7日(土曜日) 〇日
模備の ターン を比止にあったが、 「1Phon 12 21 21 21 21 21 21 21 21 21	スマート	フォン通信急増
度 0 携帯関連 の し の 度 に 対 増 え ア ッ プ ル の し の に 下 げ 増 え ア ッ プ ル の の し に 下 ボ 増 え の が 増 え の の プ れ ろ の で 増 え の の で 見 ル の の の の の の の の の の の の の の の の の の	増で回線不足への懸念が 増や基幹通信網の増強を 高や基幹通信網の増強を ことば」参照) ことば」参照)	機能携帯電話=スマホ) 構能携帯電話=スマホ)
言 術 開 サ を 活 る 次 句 た 世	民間投資を携帯向けが下支え 通信大手3社の投資額 1.6 ^{-(注)} ドコモ、KDDI(au)、ソフト バンクの合計。12年度は	12年度1割増
じように、ネット経由	思推定 1.4 1.2 1.0 0 2008年度 09 10 11 12	が約6割零を占め、今後も 「1100000000000000000000000000000000000
ケ 一 帯 の 急 増 で 11 年 12 名 。 。	大基調は民間に 大支調は見ての11年度の設備 としていたが、通信量の に減らす に減らす にする見込み。1200億円と の設備 100億円 100億 100 100	やじる。ほとんどを国内に たが強いる。ほとんどを国内に
利」によると、国内の携帯電	局整備の一巡でありたけ る。13年度以降も増強を る。13年度以降も増強を る。13年度以降も増強を る。13年度以降も増強を る。13年度以降も増強を 14年度はのの14年の14日の 14年の14 14年の14 14年の14 14 14 14 14 14 14 14 14 14 14 14 14 1	

ΤΟΚΥΟ

背景:無線回線の逼迫

5

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

スマートフォンやクラウドコンピューティングの普及などにより, 無線通信のデータ量が急増。 大容量データはミリ波回線に迂回するべきではないか

ミリ波ネットワークの将来イメージ ΤΟΚΥΟ ΤΙΞΕΗ

Pursuing Excellence

ミリ波は機器間でのデータ転送に使用されるだけでなく、WiFi, WiMaxの基地局間 同士を接続するとともに「ミリ波ゲート」を通過する間に必要なデータを転送できる

ミリ波ゲート

ミリ波は直進性が高いため、デバイスを対向させないと通信できない。 しかし、データ伝送が高速なため、瞬時のデータ転送が可能である。 そこで、「ゲート」を設け、そこを通過するときにデータ転送を行ってはどうか?

ΤΟΚΥΟ ΤΙΞΕΗ

60GHz CMOS トランシーバの概要

利用モデル

ギガビット機器間データ伝送の実現 瞬時のデータトランスファーを狙い,小型,低電力

ΤΟΚ

・チャネル内の周波数特性の均一化
・57GHz~66GHzまでの周波数帯域での特性均一化

各種コンテンツの転送に要する時間

ミリ波を用いれば無線でも約10秒でDVDのコンテンツが転送可能

12

ΤΟΚΥΟ ΤΕΕΗ

従来のミリ波システム

2006年にはGaAs技術を用いて60GHzのモデュールが完成していた

しかしながら、更なるコストダウンが必要だった他、 ベースバンドチップが無く、データ伝送速度は50Mbps程度であった。

13

ΤΟΚΥΟ ΤΕΓΗ

これまでの実績

QPSK (N=2), BW=1.7GHz \rightarrow DR=3.4Gbps 16QAM (N=4), BW=1.7GHz \rightarrow DR=6.8Gbps 16QAM (N=4), BW=4.0GHz \rightarrow DR=16Gbps

今後の計画

64QAM (N=6), BW=4.0GHz \rightarrow DR=24Gbps 64QAM (N=6), BW=8.0GHz \rightarrow DR=48Gbps

技術課題と対策

広帯域化:RF回路とBB回路の広帯域化,ゲインフラット化,ADCの高速化 高SNR:アンテナ利得の向上,フロアノイズの減少,ADC分解能の向上 低位相ノイズ:インジェクションロック技術の向上,インダクタのQの向上

60GHz CMOSトランシーバー 1

- ダイレクトコンバージョン型による小型・低消費電力化
- 低消費電力ADC, DAC

15

アンテナ内蔵パッケージの開発

16.3mm x 14.4mm

[3] R. Suga, et al., EuMC 2011

ΤΟΚΥΟ ΤΕΕΗ

チップ性能測定系

18

ΤΟΚΥΟ ΤΕΕΗ

RF貫通試験 (16QAM)

16QAMでもきれいなコンステレーションが得られた

					,	
Channel/ Carrier freq.	ch.1 58.32GHz	ch.2 60.48GHz	ch.3 62.64GHz	ch.4 64.80GHz	ch.1-ch.4 Max rate	
Modulation			16QAM			
Constellation	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		制制 化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化	字 字 课 制	4 8 5 <u>4</u> 5 8 8 8 8 8 8 8 9 8 8 9 8 4 9 8 4 9 8 4	
Spectrum	10 0 -10 -20 -30 -40 55.08 58.32 61.56	10 0 -10 -20 -30 -40 57.24 60.48 63.72	10 0 -10 -20 -30 -40 59.40 62.64 65.88	10 0 -10 -20 -30 -40 61.56 64.80 68.04	10 0 -10 -20 -30 -40 59.40 62.64 65.88	
Back-off	4.4dB	4.6dB	5.0dB	5.7dB	5.0dB	
Data rate* 7.0Gb/s 7.0Gb/s		7.0Gb/s	7.0Gb/s	10.0Gb/s (ch.3)		
EVM	-23.0dB	-23.0dB	-23.3dB -22.8dB		-23.0dB (ch.3)	
Distance**	0.3m 0.5m		0.5m	0.3m	>0.01m (ch.3)	

*The roll-off factor is 0.25. The bandwidth is 2.16GHz except for Max rate.

**Maximum distance within a BER of 10-3. The 6-dBi antenna in the package is used.

19

ΤΟΚ

性能比較(RF+BB)

世界初の4チャネル全ての送受が可能なRF+BBチップ^{******} 16QAMを用いて6.3Gbpsの超高速伝送を低電力で実現

	Integration	Data rate (16QAM)	Ch.	P _{DC} (Tx/Rx)
CEA-LETI [5]	RF (Hetero)	3.8Gb/s	-	1,357mW / 454mW
SiBeam [6]	RF (Hetero)	3.8Gb/s	Ch.1-2	1,820mW / 1,250mW
Tokyo Tech (This work)	RF (Direct) +analog BB +digital BB	RF+BB: 6.3Gb/s	Ch.1-4	RF:319mW / 223mW BB:196mW / 398mW

 [1] K. Okada, et al., ISSCC 2011 [4] H. Asada, et al., A-SSCC 2011 [5] A. Siligaris, et al., ISSCC 2011 [6] S. Emami, et al., ISSCC 2011 [12] C. Marcu, et al., ISSCC 2009

ΤΟΚΥΟ

世界最高のデータレートを目指して 21

世界最高のデータレート(16Gbps)を実現。

Constellation	• • • • • • • • • • • • • • • • • • •	•••• •••• •••• 19912 points	13502 points	42024 points	
Modulation	QPSK	16QAM	QPSK	16QAM	
Symbol rate	1.76GS/s	1.76GS/s	5.0GS/s	4.0GS/s	
Data rate	3.52Gb/s	7.04Gb/s	10.0Gb/s	16.0Gb/s	
EVM (withDFE)	-30.5dB	-28.2dB	-15.2dB	-16.1dB	

60GHzフロントエンド性能比較

22

ΤΟΚΥΟ ΤΙΕΓΗ

Pursuing Excellence

世界最高速の通信速度を達成

60GHz CMOS RF回路設計のポイント

CMOSの微細化とRF回路性能

RF回路の基本性能(利得, ノイズ)は最終的にはデバイスのf_T,f_{max}で決まる^{Excellence} 微細化によりCMOSのf_T, f_{max}は今後も向上する

NF<4dB at 60GHz はCMOSで達成している

- O Bulk CMOS
- ▲ Ultra-Thin-Body Fully-Depleted (UTB FD) SOI
- Multi-Gate MOSFETs

ITRS RFAMS 2011.

Matsuzawa & Okada Lab.

ΤΟΚΥΟ ΤΙΕΓΙ

増幅器設計

増幅器設計は、サイズ設定、バイアス設定、インピーダンスマッチング デカップリング設計につきる

25

ΤΟΚΥΟ ΤΕΓ

ゲインフラットネス

信号帯域内の周波数特性の偏差があると16QAM信号にISIを生じ, ビット誤り率が低下する。→整合回路を調整して周波数偏差を抑える。

ΤΟΚΥΟ ΤΕΕΗ

スルーオンリー法

パッドと付きだし部分を測定

Thru (short line) structure

Pad model

L-2L 法

L (200um)と2L (400um)の伝送線路で測定

A. M. Mangan, et al., IEEE Trans. on Electron Devices, vol. 53, no. 2, pp.235-241, Feb. 2006 N. Takayama, et al., IEEE Asia-Pacific Microwave Conference (APMC), Singapore, Dec. 2009.

 Z_P

伝送線路の特性インピーダンスを2つの方法で評価 スルーオンリー法では本来線路長に依らない特性インピーダンスが 線路長により異なっている。L-2L法では一致している。→ L-2L法が精度が高い

帰還容量キャンセル

30

必要な直交発振器の位相ノイズ 31

16QAMを実現するには-90dBc/Hz@1MHz以下の位相ノイズが必要

それまでの60GHz帯直交発振器は -76dBc/Hz@1MHz程度

K. Scheir, et al., ISSCC, pp. 494-495, Feb. 2009.

ΤΟΚΥΟ

DTECH PursuingExcellence

低位相ノイズ直交VCO

60GHzの直交VCOに20GHzのPLLでインジェクションロックをかけることで

ダイレクトコンバージョンや16QAMが可能となった。

33

ΤΟΚΥΟ ΤΕΓΗ

超高速·低電力ADC

ミリ波ベースバンド用

Matsuzawa & Okada Lab.

高速信号伝送とADC性能

伝送回路のデータレートはADCの分解能Nと変換周波数f_sの積に比例する

ΤΟΚ

Pursuina Excellence

ノイズがADCの量子化ノイズで決まると仮定した場合

Dynamic pre-amp Latch V_{DD} V_{h} CLK b FP FN voltage 0 **SN** p О V_{h} V_{ref} V_{in} \cap SP \cap

動作波形

M. Miyahara, and A. Matsuzawa., A-SSCC, 9-2, pp 269-272, Japan, Fukuoka, Nov. 2008.

ミスマッチ補償回路

トランジスタサイズを減少させて消費エネルギーを下げ、ミスマッチ電圧の増大は デジタルミスマッチ補償技術により抑制して高精度化する

60GHz トランシーバ用フラッシュADC

Pursuing Excellence

Matsuzawa & Okada Lab.

ΤΟΚΥΟ ΤΙΕΓΗ

M. Miyahara and A. Matsuzawa, et al., RFIC 2012.

VGA Gain range	0-40 dB
ADC Resolution	5 bit
Sampling rate	2304 MS/s
Power	VGA : 9 mW
Consumption	ADC : 12 mW [*]
DNL, INL	< 0.8 LSB
SNDR	26.1 dB
FoM of ADC	316 fJ/convs

*single channel inc. S/P

ADC性能の比較

60GHzトランシーバ用として世界最小レベルの消費電力とコア面積を達成

	Architecture	Cal.	fs [GS/s]	SNDR [dB]	Power [mW]	FoM [fJ/-c.s.]	Process [nm]	Area [mm²]
[1]	Flash	-	3.5	31.2	98	946	90	0.149
[2]	SAR	Internal	2.5	34.0	50	489	45	1
[3]	Folding	Internal	2.7	33.6	50	474	90	0.36
[4]	Pipeline, Folding	External	2.2	31.1	2.6	40	40	0.03
[5]	Flash	Internal	2.88	27.8	36	600	65	0.25
This work	Flash	Internal	2.3	26.1	12	316	40	0.06

[1] K. Deguchi, et al., VLSI Circuits 2007 [2] E. Alpman, et al., ISSCC 2009
[3] Y. Nakajima, et al., VLSI Circuits 2007 [4] B. Verbruggen, et al., ISSCC 2010
[5] T. Ito, et al., A-SSCC 2010

ΤΟΚΥΟ

研究室の高周波特性評価装置

42

110GHzまでの最新の高周波評価装置が揃っている

トランシーバー開発メンバー

修士学生が中心の開発メンバー

2011年1月

43

ΤΟΚΥΟ ΤΕΕΗ

38GHz アウトドアシステム

38GHz 屋外ミリ波システム

1Gbpsの伝送を達成

(それまでは80Mbps)

46

ΤΟΚΥΟ ΤΕΕΗ

システム構成

Gb Ethernetとコンパチにシステム 全回路はアンテナ裏面に実装し、極めてコンパクト

ΤΟΚΥΟ ΤΕΕΡ

開発したアナ・デジ混載 BB SoC

DSPとADC, DAC混載したSoCを開発 64QAMを用いることで260MHzの帯域で1Gbpsの超高速伝送を実現

48

BER vs. SNR

49

ΤΟΚΥΟ ΤΙΕΓΗ

Pursuing Excellence

ADCの性能向上(8bit → 10bit)でBER特性を改善 640Mbpsを1Gbpsに向上

C/N vs 64QAM_BER on B-B pair

新方式の ADC

超高速多値伝送に最適の新変換方式の10bit ADCを開発

10b, 320MSps, 30mW ADC

No interleaving No double sampling No OpAmp No calibration

補間パイプライン型ADC

		This Work	[1]	[2]	[3]	[4]	[5]
1	Resolution (bit)	10	10	10	11	10	11
	F _{sample} (MHz)	450	500	205	800	1350	1000
,	V _{DD} (V)	0.8/1.2	1.2	1.0	1.3/1.5	1.2/1.6	1.2/2.5
	Power (mW)	40	55	61	350	175	250
	ENOB (bit)	8.7	8.5	8.7	8.7	8.0	8.3
	FoM (pJ/conv.step)	0.2	0.31	0.65	1.07	0.6	0.77
	Technology (nm)	90	90	90	90	130	130
	Active Area (mm ²)	0.49	0.5	1	1.4	1.6	3.5

M. Miyahara, A. Matsuzawa, VLSI-CS, 2011.

5(

38GHz High gain planar antenna

高利得・高アイソレーション平面アンテナを開発

安藤・広川研究室とJRC

51

ΤΟΚΥΟ ΤΕCH

Pursuing Excellence

Gain: 34.58dBi@38.75GHz Efficiency: 84.9% Tx/Rx Isolation: 75 dB

東エ大ミリ波モデルネットワーク

ミリ波ネットワークの課題と対策

53

ΤΟΚΥΟ ΤΕΕΗ

Sリ波は降雨に弱いので、適応制御により破綻しないネットワークを構築する

Matsuzawa & Okada Lab.

NEC武蔵小杉 (4km)までの延長 5

4km ミリ波伝送への挑戦

55

Matsuzawa 👘 & Okada Lab.

天気による信号強度利用率を調査

ミリ波ネットワークを実際に運用して天候の影響などを調査。^{Pursuing Excellence} メッシュネットワークにすると、雨でも全ての経路が切断されることは無い。

5

ΤΟΚΥΟ ΤΕΕΗ

38G システム回線降雨による不稼働率実測累積プロット

58

降雨の局所性の振る舞い例

ミリ波技術を集中豪雨対策に使用できないか、検討中

Saitama, Japan (August 2006)

Real picture of localized rain.

pyright of picture The Asahi Shinbun Company [2

Guam (September 9, 2008)

59

TOKYO TIECH Pursuing Excellence

ミリ波ネットワークの将来イメージ 60 ΤΟΚΥΟ ΤΕΕΗ

ミリ波は機器間でのデータ転送に使用されるだけでなく、WiFi, WiMaxの基地局間 同士を接続するとともに「ミリ波ゲート」を通過する間に必要なデータを転送できる

まとめ

- ハードは準備ができた。ミリ波利用モデルの開発が重要に
- 超高速ミリ波通信への期待
 - スマホなどによる無線データ量の急増
 - 瞬時の大容量データ転送
- 60GHz帯CMOSトランシーバの開発
 - CMOS微細化によるRF性能の向上とRF/BB一体集積化技術
 - 60GHz 高周波回路, 16QAMなどの多値伝送と数GHzの広帯域化技術
 - インジェクションロック技術などによる低位相ノイズ化技術
 - 超高速·低電力ADC技術
- 大学主体の産学連携開発体制
 - 将来技術のインキュベーション
 - 大学で高性能集積回路設計や、システム試作が可能
 - キャンパスミリ波ネットワークでの運用実証

