

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier

<u>Hyunui Lee,</u> Masaya Miyahara, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Outline

- Background
- Body voltage controlled amplifier
- 12-bit, 300 MS/s interpolated pipeline ADC
- Simulation and measurement results
- Conclusion

• Background

- Body voltage controlled amplifier
- 12-bit, 300 MS/s interpolated pipeline ADC
- Simulation and measurement results
- Conclusion

Background

•To realize high order modulation, high performance ADC is required

D_{rate}: Data rate N: ADC's resolution F_s: Sampling frequency

Interpolated Pipeline ADC

•10-bit, 320 MS/s with low-gain amplifier -No calibration for MDAC stage

[2] M. Miyahara, et al., VLSI Circuits, 2011.

Amplifier's Linearity Issue

Open-Loop SD-amp is not enough for 12-bit

- Background
- Body voltage controlled amplifier
- 12-bit, 300 MS/s interpolated pipeline ADC
- Simulation and measurement results
- Conclusion

Conventional Amplifier Topologies

Body Voltage Controlled Amplifier

- Only 2/ flows
- No tail current source
- M₁~M₄: Input
- V_{INN} M₅~M₆: Current mirroring
 - M₇~M₁₀: Gain enhancement

Current Biasing Method

- W_1 : $\alpha W_2 = i$: $\alpha i \Rightarrow$ Current mirroring
- Current biasing by NMOS body bias control

10

Amplifier for Current Biasing

- •Current variation transferred via C₁
- •C₂ for generating DC voltage for feedback

Current Biasing Range

•Current biasing range : 5.5 ~ 10.5 mA • g_{mb} is maintained higher than 8.5 mS

Amplifier for CMFB

- •Outputs are averaged in C₃
- •Averaged voltage is transferred via C₄

- Background
- Body voltage controlled amplifier
- 12-bit, 300 MS/s interpolated pipeline ADC
- Simulation and measurement results
- Conclusion

ADC Architecture

- •5 stages (1-bit redundancy in 1st ~ 4th)
- •1st stage utilizes closed-loop topology

Amplifier's Offset Calibration

Amplifier's offset is cancelled by DAC

16

AC Simulation Results

- •ENOB keeps higher than 11.5-bit until 400 MS/s @ 50 MHz input
- 10.8-bit of ENOB is achieved @ 400 MS/s and Nyquist input

- All transistor model
- Room temperature
- Without transient noise and component mismatch

ADC Chip Photo

•1P9M 90 nm CMOS, Core area is 0.48 mm²

DC Measurement Results

- •DNL: + 1.4 / 1
- •INL : + 4.5 / 5.8
- •DC characteristic is degraded by parasitic components in input and ref. nodes

Measured FFT Spectrum

•300 MS/s and 100 kHz input

- 10-bit of ENOB is achieved

Amplifier Performance Table

•To achieve 12-bit, 400 MS/s ADC operation,

Topology	Body voltage control		
DC Gain [dB]	45		
Power Consumption [mW]	<mark>15.6</mark> (↓40 % from Folded-Cascode)		
Settling Time [ps]	500		
Output Swing Range [mV _{pp}]	<mark>600</mark> (↑12.5 % from Telescopic)		

ADC Performance Table

	This work	[3]	[4]	[5]
Resolution [bit]	12	12	12	12
F _{sample} [MS/s]	300	800	1000	3000
V _{DD} [V]	1.2	1 / 2.5	1.8 / 3.3	1 / 2.5
Power [mW]	60	105	550	500
ENOB _{peak} [bit]	9.96 (100 kHz)	9.5	9.5 (by SNR)	9.5
FoM [pJ/conv.]	0.2	0.18	0.76	0.23
Technology [nm]	90	40	180 (SiGe)	40
Core Area [mm ²]	0.48	0.88	2.35	0.4
Linearity Compensation	No	Yes	Yes	Yes
Interleave	No	4-times	No	2-times

[3] D. Vecchi, *et al.*, JSSC 2011. [4] R. Payne, *et al.*, ISSCC 2011. [5] C. Y. Chen and J. Wu, VLSI Circuits, 2011. 22

- Background
- Body voltage controlled amplifier
- 12-bit, 300 MS/s interpolated pipeline ADC
- Simulation and measurement results
- Conclusion

Conclusion

- Body voltage controlled amplifier is proposed
 - -Low power consumption & wide swing range
- 12-bit, 300 MS/s interpolated pipeline ADC with proposed amplifier is demonstrated
 - No linearity calibration
 - ADC achieves 10-bit of ENOB with slow input
- Performance can be improved by elimination of input parasitic components

Acknowledgement

This work was partially supported by NEDO, MIC, CREST in JST, STARC, Berkeley Design Automation for the use of the Analog Fast SPICE (AFS) Platform, and VDEC in collaboration with Cadence Design Systems, Inc. and Huawei.

Thank you for your interest!

Hyunui Lee, lee@ssc.pe.titech.ac.jp

26