

積分器とSARADCを用いた1ps分解能の 時間・デジタル変換器

O徐 祖楽、宮原 正也、松澤 昭 東京工業大学 理工学研究科・電子物理工学専攻 松澤・岡田研究室

Abstract

We propose a time-to-digital converter (TDC) that uses a Gm-C integrator to translate the time interval into voltage, and quantizes this voltage with a SAR-ADC. The proposed method is capable of achieving pico-second resolution, avoiding limitations in delay-chain-based TDCs, such as logic gate propagation delay, mismatches, and voltage surges. Furthermore, taking the advantages of SAR-ADC, small area and low power consumption of voltage quantization are attainable. The chip was fabricated in 90nm CMOS. Its measured DNL and INL are -0.6/0.7 LSB and -1.1/2.3 LSB, respectively, with 1ps per LSB in a 9-bit range.

Outline

- Motivation and Previous Solutions
- Integrator-Based Time-to-Digital Converter
- Circuits Design
 - Level Shifter
 - Gm-C Integrator
 - SAR-ADC
- Implementation and Measurement
- Conclusion

Motivation

- Pico second time resolution is challenging
- Delay-chain TDC does not serve for it

- Systems that demand pico second resolution
 - ToF imaging
 - Laser range finder
 - Digital PLL, etc.

Previous Solutions

- Vernier TDC typically uses a DLL against PVT but consumes extra power
- Mismatch among stages still exists

($t_{d1} - t_{d2}$) varies on each stage by PVT

Previous Solutions

ΤΟΚ

- Time amplifiers (TA) suffer nonlinearity and mismatch
- Too many calibrations are required

- Stochastic TDC suffers short range
- Delta-sigma TDC's input bandwidth is low

Stochastic

N arbiters w/ mismatches

[V.Kratyuk, TCAS-I 09]

Delta-Sigma

[J.P.Hong, ISSCC 12]

Integrator-Based TDC 8

- Integral is proportional to time
- No limitation of logic gate delay
- Few calibrations are required

Integrator-Based TDC 9

- Solutions in old days... t = CV/I
- Large capacitance and ADC pose resolution, density and power issues

Integrator-Based TDC 10

 Proposal: use MoM capacitors and SAR-ADC

SAR-ADC: low and dynamic power

Pursuing Excellence

Integrator-Based TDC /11

- When capacitors become small → charge injection, charge sharing, and clock feed-through can be worse
- Solution: fully-differential Gm-C

Architecture

ΤΟΚ

: 600000

OTA enhances Gm's output resistance

Level Shifter

- 13 TOKYOTIECH Pursuing Excellence
- Level shifting during rising of CK₁ and CK₂
- Larger amplitude (V_i) → finer resolution but poorer linearity

Gm-C Integrator

 Source degeneration and neutralization capacitor

SAR-ADC

- ENOB = 9.8-bit
- 1mW@10MHz, 0.15mm²

Dynamic comparator

Implementation

16

ΓΠΚΥΠ

Okada Lab.

 Area of SAR-ADC can be reduced to 1/8 if a 10-bit topology is designed

Measurement

- 1ps LSB was obtained without calibrations
- Power can be reduced by improving the integrator

DNL/INL

Performance comparison

	TNS'07	VLSI'11	ESSCIRC'10	This work
Туре	Vernier	Pipeline	Stochastic	Integrator
CMOS [nm]	130	130	65	90
Supply [V]	3.3	1.3	1.2	1.2
Resolution [ps]	37.5	0.63	3	1
Range [ps]	2000	1300	52	±256
DNL [LSB]	0.2	0.5	1.4	-0.6/0.7
INL [LSB]	0.35	2	1.5	-1.1/2.3
Area [mm ²]	0.22	0.32	0.04	0.31
Frequency [MS/s]	0.1	65	40	10
Power [mW]	150	10.5	8	20.4

Conclusion

- Voltage domain is still more resolvable for high resolution TDC
- SAR-ADC is a promising solution to integrator-based TDC
- Few calibrations are required comparing with time-domain solutions
- Power and area will be improved

