

A Scalable ADC for Green and Dependable Communications

Akira Matsuzawa

Tokyo Institute of Technology

Summary

- Sigma-delta ADC is widely used for wireless communications, however it has a limitation.
- SAR ADC has attractive features for green and dependable wireless communications.
 - Low power
 - Low voltage ..0.7V
 - Scalable P_d for the sampling frequency
 - Can increase SNR by oversampling using digital filter
 - Can increase signal bandwidth by interleaving
 - Small occupied area
- Developed 12 bit SAR ADC using 90nm demonstrates low P_d of 2mW at 50MSps, P_d scalability with the sampling rate, and possibility of increase of SNR by over sampling.
- Developing 12bit SAR ADC using 65nm will realize a green and dependable ADC for wireless communication.

ADC performance and the data rate

Data rate is proportional to the product of f_s and N

$$D_{rate} \approx N \cdot f_s$$

If the signal bandwidth is fixed, increase of resolution is required to increase the data rate.

Shannon's theory to determine the communication capacity

$$C = BW \log_2 \left(1 + \frac{P_S}{P_N}\right)$$

Higher data-rate can be realized by higher multi-level modulation. It results in increase of ADC resolution.

SNR vs. signal bandwidth of ADCs

SNR is inversely proportional to the signal bandwidth

P_d vs. signal bandwidth

P_d is proportional to the square root of the signal bandwidth

Sigma-delta ADC

Sigma-delta ADCs are widely used for wireless communications. But....

Sigma delta ADC can suppress only the quantization noise of ADC. The performance is limited by the input error voltage. **Op-Amp** is needed for the integrator and consumes static power.

ntization noise can be suppressed so much

 $V_{e_eff} \approx \frac{V_e}{OSR}$ Error voltage at input summing node can't be suppressed so much. Suppressed by only OSR.

Basic idea for low energy and scalable analog design 7

Conventional analog circuit consumes continuous current and results in larger energy consumption. Not scalable Pd for operating frequency.

Dynamic circuits doesn't consume larger energy.

CMOS: Consumed energy is independent of the delay time. Scalable power consumption for the operating frequency.

SAR ADC

SAR ADC doesn't consume any static power and has no tradeoff between the speed and the energy consumption.

FoM and FoM2

High SNDR over 70dB and low FoM of less than 50fJ looks not easy.

Linearity of SAR ADC

Non-linearity caused by CDAC can be compensated digitally by using very small capacitor array. Therefore, a small capacitance can be used.

Proposed dynamic comparator

A proposed dynamic comparator consumes no static current. Operating speed is high of 4GHz and noise is very low. The offset voltage can be compensated by changing the C_L or I_{D_L}

Developed 12bit SAR ADC

We have developed 12bit SAR ADC using 90nm CMOS technology.

Self clocking technique

Self-clocking scheme is very useful

Reducing power consumption (Clock circuits, routing clock,)
Just an enable sampling pulse is required. No need of clock.

Comparison is ended if the output voltages are not same.

Timing and Leakage cutoff

ADC needs only sampling pulse and the conversion cycle is made by self clocking. The end flag is generated after the conversion, and it can be used as a leakage cutoff switch pulse.

Measured performance of 12b SAR ADC 15

Very low energy and high speed operation can be obtained. Power dissipation is quite scalable with sampling frequency.

SNR vs. signal bandwidth of ADCs

P_d vs. signal bandwidth

 P_d of SAR ADC is lower than that of SD ADC. Even if the over sampling method is used, it still lower. If the sampling frequency is lower, P_d becomes lower e.g. 100uW.

Use of MOM capacitance

MIM capacitance has a good matching, MOM is not so,,,. However matching issue can be solved by digital mismatch compensation. Capacitor density is increased by technology scaling. Very small capacitance (<0.1fF) is available and useful for the mismatch comp.

SAR ADC vs. SD ADC

SAR ADC must be better than the SD ADC

; Small area, low power, easy to design, and low voltage of LT. 1.0V.

SAR ADC: Area: $0.03mm^2$ (65nm) $f_b=25MHz P_d=2.0mW$, SNDR=70dB SDADC: Area: $0.05mm^2$ (40nm) $f_b=10MHz P_d=2.6mW$, SNDR=70dB

Conference	Technology	Area (mm ²)	Power (mW)	SNDR (dB)	DR (dB)	BW (MHz)	Fs (MHz)	FOM (fJ/conv.)	FOM2
Modulator-B	40nm	0.051	2.57	70.0	70.6	10	300	50	166.5
Modulator-A	65nm	0.060	1.36	68.8	69.3	3	186	101	162.0
VLSI2011[4]	40nm	0.085	2.80	78.0	83.0	1.92	246	112	171.4
ISSCC2006[5]	130nm	1.2	20.0	74.0	76.0	20	640	122	166.0
ISSCC2011[6]	90nm	0.15	8.0	63.5	70.0	25	500	125	164.9
ISSCC2009[7]	65nm	0.084	4.52	79.1	80.0	2	128	153	166.5
CICC2010[2]	65nm	0.16	3.6	69.8	70.2	4	140	178	160.7

Summary

- Sigma-delta ADC is widely used for wireless communications, however it has a limitation.
- SAR ADC has attractive features for green and dependable wireless communications.
 - Low power
 - Low voltage ..0.7V
 - Scalable P_d for the sampling frequency
 - Can increase SNR by oversampling using digital filter
 - Can increase signal bandwidth by interleaving
 - Small occupied area
- Developed 12 bit SAR ADC using 90nm demonstrates low P_d of 2mW at 50MSps, P_d scalability with the sampling rate, and possibility of increase of SNR by over sampling.
- Developing 12bit SAR ADC using 65nm will realize a green and dependable ADC for wireless communication.