

A 6-bit Subranging ADC using Single CDAC Interpolation

<u>Hyunui Lee,</u> Masaya Miyahara, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Outline

- Background
- Interpolation techniques
- 6-bit, 500 MS/s Subranging ADC
- Simulation Results
- Conclusion

• Background

- Interpolation techniques
- 6-bit, 500 MS/s Subranging ADC
- Simulation Results
- Conclusion

Background

- ADC for mobile applications
 - Low power and small area are required
- •ADC in recent scaled process
 - Reduced intrinsic gain of transistor
 - ⇒ Comparator based ADCs are growing

Characteristic of comp. based ADCs for 6-bit

	Speed	Core area	Power
Flash	Ultra high	Large	High
Subranging	High	Small	Low
SAR	Low	Medium	Ultra low

Purpose of Research

- Interpolation technique
 - Generate new signal using two certain signals
 - Circuit components are reduced
 - Reference range is selected automatically
- Subranging ADC using interpolation [1]
 - Simplified design, high linearity
 - Lowest power consumption
 - Two CDAC are required ⇒ Need improvement
- Realize interpolation using one CDAC
 - For low power consumption and small core area

Background

- Interpolation techniques
- 6-bit, 500 MS/s Subranging ADC
- Simulation Results
- Conclusion

Previous Interpolation

- **☺ DAC's gain is not problematic**
- **High power, large area, high performance buffer**

Proposed Interpolation

- Using one differential signal, two DC references
 - Only one CDAC is required
- Power consumption, core area, and sampling capacitance are reduced

Comparisons of Interpolation

Same operation is achieved

9

Gate-Weighted Interpolation

Gate-weighted TR realize interpolation

- Background
- Interpolation techniques
- 6-bit, 500 MS/s Subranging ADC
- Simulation Results
- Conclusion

ADC Architecture

- •4-bit coarse, 3-bit fine stage
 - 1-bit redundancy for error correction
- Only one CDAC
 - DC references from ref. ladder in coarse stage

CDAC Operation

•Output is shifted by sub-ADC's result

Comparator

- •Based on double-tail latched comparator [2]
 - Offset is cancelled by varactors

[2] M. Miyahara et al., A-SSCC 2008

Effect of Reference Variation

•To achieve 0.2-bit ENOB degradation, $\Rightarrow \triangle \text{Ref. should be lower than 0.5-LSB}$

- Background
- Interpolation techniques
- 6-bit, 500 MS/s Subranging ADC
- Simulation Results
- Conclusion

DNL / INL Simulation Results

- •DNL: +0.15 / -0.25
- •INL: +0.15 / -0.15

- All transistor model
- Sampling speed: 500 MHz / Data points: 512
- Room temperature
- Including transient noise, without component mismatch

18

ENOB vs. *F*_s Simulation Result

•ENOB keeps higher than 5.9-bit until 500 MS/s

• Simulation conditions are described in DNL / INL results slide

ADC Core Layout

- •ADC is designed by 1P9M 90 nm process
- •Core area is 0.074 mm²

Performance Comparison Table

Recent published 6-bit ADCs

Reference	Process [nm]	F _{sample} [GS/s]	P _d [mW]	SNDR [dB]	FoM [pJ/conv.]	Core Area [mm ²]
[1]	90	0.7	7	35	0.25	0.13
[3]	45	1.2	28.5	36	0.45	0.1
[4]	65	1	6.27	31.5	0.21	0.11
[5]	40	2.2	2.6	31.6	0.04	0.03
This Work (Sim.)	90	0.5	3.3	36	0.12	0.074

[3] P. Veldhorst, *et al.*, ESSCIRC 2009. [4] J. Yang, *et al.*, JSSC 2010. [5] B. Verbruggen, *et al.*, JSSC, 2010.

Comparison with Previous Version

•Sampling Cap., power consumption (FoM), core area are improved

- Speed is reduced due to no interleaving

Reference	C _{sample}	<i>F</i> _{sample}	P _d	FoM	Core Area
	[pF]	[GS/s]	[mW]	[pJ/conv.]	[mm²]
[1] (Previous Work)	2.7	0.7	7	0.25	0.13
This Work	1.7	0.5	3.3	0.12	0.074
(Sim.)	(↓38%)	(↓29%)	(↓53%)	(↓52%)	(↓43%)

Previous work: Subranging using two CDAC interpolation 22

- Background
- Interpolation techniques
- 6-bit, 500 MS/s Subranging ADC
- Simulation Results
- Conclusion

Conclusion

- Interpolation using one diff. signal and two ref. voltages has been proposed
- 6-bit, 500 MS/s, 3.3 mW ADC has been designed
 - -Sampling capacitance (138%)
 - Power consumption (153%)
 - Core area (↓43%)

(compared with previous ADC)

- Speed can be improved with interleaving

Acknowledgement

This work was partially supported by NEDO, MIC, CREST in JST, STARC, Berkeley Design Automation for the use of the Analog Fast SPICE (AFS) Platform, and VDEC in collaboration with Cadence Design Systems, Inc. and Huawei.

Thank you for your interest!

Hyunui Lee, lee@ssc.pe.titech.ac.jp

26

CDAC and Fine Stage Operation

Gate-weighted Interpolation

•Based on double-tail latch comparator [2]

