

松澤 昭

東京工業大学 大学院理工学研究科

2013/11/21

1 TOKYOTIECH Pursuing Excellence

- ADCの性能推移
- ・微細化・低電圧化の課題
- SAR ADC
- ・スケーラブル 12bit SAR ADCの開発
- ・PLL技術
- レイアウトドリブン設計と
 プログラマブルアナログ回路技術
- ・まとめ

要旨

- 近年の微細CMOSの高V_T化、サブ1V化、低gm化によりアナログご 設計(特に増幅器)のマージン確保が困難になっている。
- SAR ADCはOpAmpを使用せず、CMOSロジックのような構造の ためエネルギー効率が高く、微細化・低電圧化にも耐える。
- 今後の汎用的ADCとして高速12bit SAR ADCを開発。これまでの 無線通信用ADCの性能を最小電力で実現。
- PLLの高性能化・低電力化に向けて、クラスC VCO、インジェクションロック発振器、サブps分解能TDCなどを開発中。
- レイアウトドリブンのアナログ設計手法を提案。低電力化、高速化、 高精度化、小面積化に寄与。プログラムアナログのベース。
- プログラムアナログによりレイアウトを含めた設計自動化を推進。
- 今後のアナログ回路は回路数を絞り込み、低電圧に対応でき、規 則性のあるものを残し、規則構造を活かしてレイアウトを含めた設 計自動化を推進し、汎用的に使用できるようにすべき。

ΤΟΚΥΟ

EDS Fair 2013, A. Matsuzawa

ADCの性能推移

6

SNRが84dB以上(上限は100dB程度)の場合はΔΣ型ADC 信号帯域が20MHz以上でSNRが40dB以上の場合はPipe, SAR Pipe, Int. SAR それ以外の領域ではSAR ADCが汎用的に使用できる

ADCの開発傾向:SNDRと変換速度

ここ数年のADC開発はSNDR 60dB以下で高速化が図られ SNDR (有効ビット)の向上は停滞している

SNDR 70 dB以下の領域

FoMは消費電力で制限されて比較器ベースの SAR ADC SNDR 70 dB以上の領域

FoMは熱雑音で制限されてオペアンプベースのΔΣ型ADC

EDS Fair 2013, A. Matsuzawa

Pursuina Excellence

ADCの開発傾向:SNDRとFoM

2000年度以後、ADCのFoMは急激に減少 (3年間で1/4)

B. Murmann, "ADC Performance Survey 1997-2011," [Online].

EDS Fair 2013, A. Matsuzawa

8

Pursuing Excellence

ΤΟΚΥΟ

微細化とADC性能

FoM(動作エネルギー)の減少は微細化が寄与している。 ただし、高SNDRにおいてはさほど寄与していない。

B. Murmann, "ADC Performance Survey 1997-2011," [Online].

EDS Fair 2013, A. Matsuzawa

9

Pursuing Excellence

微細化とSNR

TOKYOTECH 高いSNRを実現するには緩いデザインルールが必要である。

 $SNR(dB) = SNR_0(dB) - 10\log(BW)$

10

SNDRと変換エネルギーは比例する。現状は理論限界に迫っている

微細化・低電圧化の課題

SoC搭載のアナログIPの課題:低電圧化 14

SoCの電源電圧は微細化とともに年々低下しており、このことが / アナログ回路設計を困難にしている。サブ1V時代への対処が大きな課題である。ただし、マイコンでは0.13µm程度を用いているので、まだ深刻化していない。

Pursuing Excellence

OpAmpベースのADCは比較器ベースのADCに比べ消費エネルギー が大きく、しかも低電圧化すると更に増大する

> OpAmpベースADC (パイプライン型ADC) 比較器ベースADC (SAR ADC) 12bit ADC

SAR ADC

(比較器ベースのADC)

2013/11/21

低エネルギーADC 設計の基本コンセプト 18 ΓΟΚΥΟ Pursuina Excellence

CMOS論理回路のようなADCの実現

- 高速動作でも低速動作でも回路は同じ
- 消費電力が与えられた変換クロック周波数に自動的に比例する
- ・クロックが止まったら電源電流は流れない

CML 論理回路 通常の増幅器

CMOS 論理回路.

2013/11/21

SAR ADC

SAR ADCは容量DACとダイナミック型比較器, セルフクロック回路を用いることで CMOS論理回路のようなADCを実現できる。またオペアンプを用いていないので 信号振幅を大きくすることが可能で, 低電圧動作にも対応できる。

EDS Fair 2013, A. Matsuzawa

19

ΤΟΚΥΟ ΤΕΕΙ

スケーラブル 12bit SAR ADCの開発

低電力12bit, 70MSps SAR ADCの開発 22

SAR ADCは最もエネルギー消費が少なく、今後最も汎用的に使用 できるADCである。容量DAC,ダイナミック型比較器、セルフクロック 回路、各種キャリブレーション回路などから構成され、定常電流が全 く流れないようになっている。

S. Lee, A. Matsuzawa, et al., SSDM 2013

Pursuing Excellence

ダイナミック型比較器はCMOSロジックと同様貫通電流がゼロで 動作する。最大4GHzの動作が可能だが、数Hzの低速でも動作する。 ノイズが大きく10bit以上の高分解能化が困難であったが、低ノイズ回路の開発に より12bitの高分解能化が可能となった。

ΓΟΚΥΟ

M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, "A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs," A-SSCC, Nov. 2008. Yusuke Asada, Kei Yoshihara, Tatsuya Urano, Masaya Miyahara, and Akira Matsuzawa, "A 6bit, 7mW, 250fJ, 700MS/s Subranging ADC," A-SSCC, 5-3, pp. 141-144, Taiwan, Taipei, Nov. 2009.

EDS Fair 2013, A. Matsuzawa

23

ダイナミック型比較器のノイズ 24 ダイナミック型比較器の構成をラッチの前にCMOS増幅器を設けた構成PursuingExcellence にすることで、ノイズを低減させた。またノイズレベルが負荷容量でほぼ決定 されることを見出し、ノイズと消費電力の最適化指針を導いた。

A. Matsuzawa, ASICON 2009, pp. 218-221, Oct. 2009.

セルフクロック回路

逐次比較を行うには分解能Nに対しN回の比較クロックが必要だ が、ダイナミック型比較器での比較の終了検出を用いたセルフク ロック回路によりPLLやDLL回路が不要となった。

比較状態: どちらも[L]状態 比較終了:異なった論理状態 セルフクロック回路

25

Pursuing Excellence

ΤΟΚΊ

動作タイミング

サンプリングパルスが入力され、立下りエッジにより逐次比較動 作が開始、12回の変換が行われると変換修了フラグが立つ。 変換に要する時間は12 -- 18ns程度しかかからない。 残りの時間は回路をオフしてリーク電流を遮断できる。

消費電力はサンプリング周波数に比例 $P_d = f_s \times E_d$

MIM容量の限界とMOM容量

MOM容量はMIM容量と違い微細化により容量密度が増加するigExcellence したがって、微細化プロセスを用いることで占有面積が小さくなり、 距離が短縮されるので、高速化、低電力化を図ることができる。

MOM容量により微細化とともに容量部の面積縮小が可能である

MOM容量の精度飽和の要因

MOM容量は面積を増加させても精度が飽和するが,その大きな 要因は容量の位置依存が強いことである。500umで1%程度の容 量傾斜がある。設計ではこの点を考慮したレイアウトや誤差補 正技術が不可欠。

このようにビットを固めたレイアウトでは 容量値の位置依存によるINL劣化が大きい 28

Pursuina Excellence

ΤΟΚ

直線性の補正

29

容量誤差や寄生容量による直線性劣化に対し、微小容量と^{Pursuing Excellence} デジタル補正回路を用いて直線性を向上させる。

65nm CMOS 0.03mm²

420µm

縦方向を短くしたのは並列動作(インターリーブ)による高速化 を考慮に入れたためである。

S. Lee, A. Matsuzawa, et al., SSDM 2013

30

Pursuing Excellence

ΤΟΚΥΟ

評価結果:SNDR

31 TOKYOTIECH Pursuing Excellence

64dB のSNDRを達成 (V_{dd}=1.2V, 1.0V) V_{dd}=0.8VではSNDRの劣化がみられる。 (スイッチ抵抗の増大が原因であると思われる)

S. Lee, A. Matsuzawa, et al., SSDM 2013

消費電力特性:スケーラブルPd 32

完全なダイナミック動作により、ADCの消費電力はCMOSロジックと同様 動作周波数に比例する。低い変換周波数では超低電力化が可能。 低い変換周波数では低電圧動作により、より低電力化が可能である。 70MSpsの高速動作を実現。

ΤΟΚΥΟ ΤΕ

性能比較

- 最高変換速度:70MSps
- 最低動作電圧:0.8V
- 最小消費電力: 2.2mW at 50MSps
- 最小FoM:28fJ
- 最小面積:0.03mm²

12bit SAR ADCs

ΤΟΚΥΟ

Pursuina Excellence

	This work			[3]	[4]
Resolution (bit)	12			12	12
V _{DD} (V)	0.8	1	1.2	1.2	1.2
fsample (MHz)	30	50	70	45	50
Pd (mW)	0.8	2.2	4.6	3	4.2
SNDR (dB)	62	64	65	67	71
FoM (fJ) Nyq/DC	81/28	62/33	100/45	36/31	36/29
Technology (nm)		65		130	90
Occupied area(mm ²)		0.03		0.06	0.1

S. Lee, A. Matsuzawa, et al., SSDM 2013.

[3] W. Liu, P. Huang, Y. Chiu, ISSCC, pp. 380-381, Feb. 2010.

[4] T. Morie, et al., ISSCC, pp.272-273, Feb. 2013.

SNRと信号帯域:スケーラブルSNR 34

SNRは信号帯域が20MHzで62dB, デジタルフィルターで信号帯域を制限する ことでSNRを向上できる。帯域1MHzで78dBのSNRを実現 高い信号帯域に対してはインターリーブで対応の予定。 消費電力はこれまでの通信用ADCに比べ最少。

S. Lee, A. Matsuzawa, et al., SSDM 2013

1V, 50MSps Operation

ΓΟΚΥΟ ΤΕΕ

SAR ADCの性能と面積

35

Pursuing Excellence

CTΔΣADCとして最も低いFoMと小さな面積のADCと比較

SAR ADC: 面積:0.03mm² (65nm) P_d=2.0mW, SNDR=70dB CTΔΣADC: 面積:0.05mm² (40nm) P_d=2.6mW, SNDR=70dB

PLL技術

PLL (位相同期ループ)は所望の周波数のクロックを作り出す

PLL (位相同期ルーク)は所呈の高波数のクロックを作り 回路で,全てのLSIに必要不可欠なものである。 システムのタイミングや位相精度を決定するものであり 消費電力も大きくなりがちである

リング発振器とLC発振器

PLLのジッタ、位相ノイズ、消費電力は主として発振器で決まる。リング発振器は LC発振器に比べ30倍程度ジッタが悪く、低電圧化により更に悪くなる。 しかしLC発振器は面積も大きく、消費電力も大きい。そこでLC発振器の 低電力化とリング発振器の低ジッタ化を進めている。

Q:LC共振回路 M:リング段数 γ:ノイズ係数

38

ΤΟΚΥΟ ΤΙΕΕΙ

EDS Fair 2013, A. Matsuzawa

0.2Vで動作するLC VCOの開発

Pursuing Excellence

ΤΟΚΥΟ

39

0.2Vで動作するLC VCOを開発した。 電流が流れる位相範囲を縮小した。 低ノイズ・高効率C級発振器を基本とし、 発振し易いようにスタートアップ回路を設けた。

K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa, "A 0.114mW Dual-Conduction Class-C CMOS VCO with 0.2V Power Supply," Dig. Symp. VLSI Circuits, pp.228-229, June, 2009.

Fig. 2. MOS current waveform of single- and dual-conduction class-C VCOs under the same signal amplitude ($A_t = 3/4 * V_{DD}$, and $V_{th} = 5/2 * V_{DD}$).

Fig. 3. Voltage waveform of the proposed VCO for drain and both gate voltages.

2013/11/21

低電圧LC VCOの評価結果

ΤΟΚΥΟ ΤΙΕΕΗ LC発振器はDCカットできるために低電圧設計がし易い。PursuingExcellence 課題は面積だが、多層配線の利用で、より省面積化が可能である。

-140

10k

0.2Vで動作するLC発振器を開発し、 -104dBc/Hz @1MHz-offset の位相ノイズ特性を得た。 Pd=110uW, FoM=187dBc/Hz の低電力動作を確認。

K. Okada, A. Matsuzawa, et al., VLSI Circuits 2009.

2013/11/21

Vdd=0.2V

10M

1M

Vdd=0.3V

100k

60GHz用低位相ノイズ直交VCO 42

60GHzの直交VCOに20GHzのPLLでインジェクションロックをかけることで -96dBc/Hz@1MHzの良好な低位相ノイズを実現。 ダイレクトコンバージョンや16QAMが可能となった。

Dig. Tech. Papers, pp. 101–102, Nov. 2010.

OKYO TEC.

lp

レイアウトドリブン設計と プログラマブルアナログ回路技術

- アナ・デジ混載LSIにおいて、アナログ回路の開発が困難な状況は改善されておらず、今後ますます困難になる。
 - 微細化・低電圧化により設計難易度が上昇
 - 設計人材の減少(事業選択・集中,リストラ)
 - 設計コスト削減の要求(IP開発費減,試作回数減)
- プログラマブルアナログ回路による解決
 - コア回路の種類をできるだけ絞る
 - 微細化・低電圧化に耐えうる回路のみを選抜
 - レイアウトに規則性のあるもののみを選抜(RDAC, CDAC, etc)
 - レイアウトを含め設計の大半を自動化(プログラマブル化)する
 - テスト容易化設計も併せて行う

RF LSIの設計

素子設計,回路設計段階からレイアウトドリブンの設計を行う

53

ΤΟΚΥΟ

プログラマブルアナログ回路の例 / 55

Skill言語を用いてレイアウトを自動生成したRDACおよびCDAC

レイアウト合成技術

TOKYD TECH-RDAC, CDACなど規則性のあるアナログ回路を自動合成^{Pursuing Excellence} 開発期間の短縮, 高速・低電力・小面積

56

2013/11/21

ピッチを合わせる

		Second and the second manimum second s
		and the second s
	i بې او	
	/	

59

Pursuing Excellence

ΤΟΚΥΟ

まとめ

- 近年の微細CMOSの高V_T化、サブ1V化、低gm化によりアデログご 設計(特に増幅器)のマージン確保が困難になっている。
- SAR ADCはOpAmpを使用せず、CMOSロジックのような構造の ためエネルギー効率が高く、微細化・低電圧化にも耐える。
- 今後の汎用的ADCとして高速12bit SAR ADCを開発。これまでの 無線通信用ADCの性能を最小電力で実現。
- PLLの高性能化・低電力化に向けて、クラスC VCO、インジェクションロック発振器、サブps分解能TDCなどを開発中。
- レイアウトドリブンのアナログ設計手法を提案。低電力化、高速化、 高精度化、小面積化に寄与。プログラムアナログのベース。
- プログラムアナログによりレイアウトを含めた設計自動化を推進。
- 今後のアナログ回路は回路数を絞り込み、低電圧に対応でき、規 則性のあるものを残し、規則構造を活かしてレイアウトを含めた設 計自動化を推進し、汎用的に使用できるようにすべき。

