

A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers

<u>James Lin</u>, Daehwa Paik, Seungjong Lee, Masaya Miyahara, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Outline

- Motivation
- Prior Arts
- Circuit Design
- Measurement Results
- Conclusion

Motivation

- Ultra-low-voltage (ULV) operation
 - Immediate power saving potential
 - Explore new circuit techniques for future technology [1]

Key Challenges

- Reduced SNR
- Reduced headroom
- Reduced gain
- Increased mismatch

[1] ITRS, 2011.

Outline

- Motivation
- Prior Arts
- Circuit Design
- Measurement Results
- Conclusion

Prior Arts

 Successfully demonstrated very good energy efficiency → but all suffer in speed

[2] S. Chatterjee *et al.*, JSSC 2005. [3] D. C. Daly *et al.*, JSSC 2009.
[4] A. Shikata *et al.*, JSSC 2012. [5] P. Harpe *et al.*, ISSCC 2013.

Outline

- Motivation
- Prior Arts
- Circuit Design
- Measurement Results
- Conclusion

Circuit Techniques Overview

- ADC architecture
- Dynamic amplifier
- Interpolation technique
- Sub-ADC structure
- Self-clocking scheme

Dynamic Amplifier

 Minimally stacked amplifier achieves high speed at low supply voltage [6]

CMD: Common-mode voltage detector

[6] J. Lin, et al., ISCAS 2011. 8

ADC Block Diagram

• Ultra-low-voltage interpolated pipeline ADC

Interpolation Technique

 Interpolation shifts the gain requirement: absolute → relative gain accuracy [7], [8]

Interpolated Pipeline

Same path for both signal and references

High-Speed Dynamic Amplifier

Dynamic amplifier with an inverter-based
 CMD for high-speed operation

 $Gain = \alpha (V_{DD} - V_{oc}) / V_{eff} , 1 < \alpha < 2$

Pseudo-Static RDAC

 Pseudo-static RDAC is proposed to calibrate the common-mode voltage during startup

Capacitive Interpolation [9]

- Absolute gain → relative gain accuracy
- Interpolation is controlled by the sub-ADC

Sampling Phase

Interpolation Phase

to A2a

to A2b

[9] M. Miyahara, *et al.*, VLSI Circuits 2011. **14**

Sub-ADC

 Gate-weighted interpolation comparators with a time-based offset calibration

[10] Y. Asada, *et al.*, A-SSCC 2009. [11] M. Miyahara, *et al.* A-SSCC 2010.

Self-Clocking

 Internal signals trigger the subsequent stages to maximize speed performance [12], [13]

Outline

- Motivation
- Prior Arts
- Circuit Design
- Measurement Results
- Conclusion

Measured DNL and INL

• Startup calibration: timing cal. + common-mode cal.

Measured SFDR and SNDR

- >38 dB of SNDR is measured up to 160 MS/s with an ERBW >80 MHz
- Consumes 2.43 mW at 160 MS/s, FoM=240 fJ/c.-s.

SFDR & SNDR vs. f_s

SFDR & SNDR vs. f_{in}

Clock-Scalable Power Performance

• Dynamic amplifier enables clockscalability in ADC's power performance

Chip Photo

- Prototype ADC is fabricated in 90 nm CMOS with the low threshold and deep N-well options
- Occupied area is 0.25 mm²

Performance Comparison

 Fastest ULV ADC compared to other stateof-the-art ULV high-speed ADCs

	[14]	[15]	[16]	[17]	This work
Architecture	Flash	Pipeline	Pipeline	Pipeline	Pipeline
Resolution (bit)	5	8	10	12	7
Supply voltage (V)	0.6	0.5	0.5	0.6	0.55/0.5*
<i>f</i> _s (MS/s)	60	10	10	10	160
Power (mW)	1.3	2.4	3.0	0.56	2.43
ENOB (bit)	4.01	7.7	8.5	10.8	6.0
FoM (fJ/cs.)	1060	1150	825	30.9	240
Technology (nm)	90	90	130	65	90
Active area (mm ²)	0.11	1.44	0.98	0.36	0.25

*Analog V_{DD} = 0.55 V, Digital V_{DD} = 0.5 V

[14] J. E. Proesel, *et al*., CICC 2008. [16] Y. J. Kim, *et al*., CICC 2007. [15] J. Shen, *et al.*, JSSC 2008. [17] S. Lee, *et al.*, JSSC 2012.

22

Summary of ULV Pipeline ADC

 Proposed ADC demonstrates the feasibility of ULV high-speed analog circuit design

Outline

- Motivation
- Prior Arts
- Circuit Design
- Measurement Results
- Conclusion

Conclusion

- 0.55 V, 7-bit, 160 MS/s, 2.43 mW pipeline ADC is realized using dynamic amplifiers and interpolation
- Demonstrates the feasibility of ultra-lowvoltage high-speed analog circuit design
- Proposed techniques are suitable for ULV and nominal-voltage high-speed circuits

Acknowledgement

This work was partially supported by NEDO, Huawei, Berkeley Design Automation for the use of the Analog FastSPICE (AFS) Platform, and VDEC in collaboration with Cadence Design Systems, Inc.

Thank you for your interest!

James Lin, james@ssc.pe.titech.ac.jp