A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC

Zule Xu, Seungjong Lee, Masaya Miyahara, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Outline

- Motivation
- Issues of conventional techniques
- Proposed TDC
- Measured performance
- Conclusion

Motivation

- A fine resolution TDC contributes low in-band phase noise to a digital PLL
- Example: $f_v = 4GHz$, $f_{ref} = 40MHz$, PN = -120dBc/Hz $\rightarrow t_{res} = 0.87ps$!
- Delay-chain's resolution is limited to its unit delay

Motivation

- For finer resolution, more <u>energy</u>, more <u>area</u>, or more <u>conversion times</u> are traded off
- Is there a solution for the best balance?

Issues of Recent Techniques

- Vernier chain
 - PVT and jitter effects
 - Arbiter's metastability (unacceptable when the input <= 1ps)
- Pipeline
 - Nonlinearity of the time amplifier (TA)
 - Mismatch

Dout

Issues of Recent Techniques

- Stochastic
 - Short linear range
 - Highly dependent on layout and process
- Noise shaping
 - Low input signal bandwidth
 - Requires a fast clock for the counter

N arbiters w/ mismatches

Issues of a Previous Technique 7

- Time-to-amplitude conversion has achieved fine resolution but...
- Fast clock necessary
- Large capacitance
- Susceptible to leakage
- Low speed

t_{res} = 32ps, 0.5um BiCMOS [E.R.Ruotsalainen, et.al, pp.1507-1510, JSSC 2000]

Time-to-Charge Conversion

8

 Time-to-charge conversion suggests the potential for extremely fine resolution

Thermal noise restricts C and I

Thermal Noise

- Noise increases with integration time (Δt)
- Trade-off exists between power (I) and area (C)

Proposal

- Time-to-charge conversion on a SAR-ADC
- Short T_{on} is required to suppress the noise; T_{on} ≈ 200ps in this design

Noise and Speed

11

 Thermal noise from the charge pump accumulated during (T_{in}+T_{on})

2) SAR-ADC should be faster than 40MS/s

SAR-ADC

- 12-bit topology
 - 10-bit ENOB@40MS/s
 - 1.6mW@1.0V power supply[S. Lee, SSDM 2013, to be presented]
- Dynamic comparator
 - \rightarrow Low power
- Metal-Oxide-Metal capacitor
 - \rightarrow High density
- Same pitch of cap. and switch
 - → Better matching and scalability

Unit capacitor and switch

Scaling of the SAR-ADC

- 13
- Down scaling → lower power and smaller area → shorter range but not harmful for an integer-N PLL
- Resolution and intrinsic SNR are not degraded since the required charges are not changed

Charge Pump

- The CMFB matches the currents of PMOS and NMOS
- Conventional
 - Amplifier-based
 CMFB
- Proposal
 - Switched-capacitor
 CMFB
 - For low power and low voltage

Charge Pump

- Other mismatches contribute to a static offset
- It can be canceled in the digital domain

Implementation

• CMOS 65nm, core area = 0.06mm²

Measurement setups

Measurement

DNL and performance summary

Performance	Value		
CMOS [nm]	65		
Supply [V]	1.0		
Conv. Rate [MS/s]	40		
Power [mW]	2.47		
Resolution [ps]	0.84		
Range [bits]	8		
DNL [LSB]	-0.7/1.0		
INL [LSB]	-2.7/1.7		

Measurement

- Single-shot precision: < 1LSB
- The thermal noise increases with longer input time interval

Performance Comparison 19

Best balance is achieved

	JSSC'10	VLSI'11	VLSI'12	ESSIRC'10	This work	Improved (Simulated)
Туре	Vernier	Pipeline	Noise Shaping	Stochastic	Charge	Charge
CMOS [nm]	65	130	130	65	65	65
Supply [V]	1.2	1.3	1.2	1.2	1.0	1.2
Resolution [ps]	4.8	0.63	3	3	0.84	1
Range [bits]	7	11	11	4	8	10
DNL [LSB]	<1	0.5	N/A	1.4	-0.7/1.0	-0.2/0.2
INL [LSB]	3.3	2	N/A	1.5	-2.7/1.7	-2.7
Frequency [MHz]	50	65	90 (OSR:16)	40	40	100
Power [mW]	1.7	10.5	3.2	8	2.47	4
Area [mm ²]	0.02	0.32	0.43	0.04	0.06	0.018

Energy and Area Efficiencies 20

Best balance is achieved

Energy efficiency:

 $FoM = Power / Frequency / 2^{N}$

or
$$FoM = Por$$

wer/ $2/BW/2^{N}$

Conclusion

- The proposed TDC has achieved 0.84ps resolution, 2.47mW power consumption, and 0.06mm² area
- The proposed TDC suggests the best balance among resolution, energy, area, and conversion times
- The proposed TDC has no issues from delay chains, TAs, or arbiters
- The proposed TDC can be a practical solution for digital PLLs

Acknowledgement

22

 This work was partially supported by HUAWEI, Berkeley Design Automation for the use of the Analog Fast SPICE(AFS) Platform, and VDEC in collaboration with Cadence Design Systems, Inc.

Thank you for your interest!

Zule Xu, xuzule@ssc.pe.titech.ac.jp