An 84 mW 0.36 mm² Analog Baseband Circuits for 60 GHz Wireless Transceiver in 40 nm CMOS

Masaya Miyahara, Hironori Sakaguchi, Naoki Shimasaki, and Akira Matsuzawa Tokyo Institute of Technology, Japan

1. Introduction

Developing an analog baseband circuitry for 60 GHz wireless transceiver in 40 nm digital CMOS. **Target Specifications** 60GHz VGA

Transceiver			ADC	
Modulation	QPSK, 16QAM		Resolution	5 bit
Data rate	3.1 Gb/s (QPSK)		Sampling rate	2304 MS/s
	6.3 Gb/s (16QAM)		DNL, INL	< 0.5 LSB
Distance	> 1 m (QPSK)		SNDR	> 25 dB
VGA			DAC	
	VGA		DAC)
Gain range	VGA	0 - 40 dB	DAC Resolution	Contemporation 6 bit
Gain range -3dB Bandwidt	VGA th	0 - 40 dB ~1000 MHz	DAC Resolution Sampling rate	6 bit 3456 MS/s
Gain range -3dB Bandwidt Input referred	VGA th noise	0 - 40 dB ~1000 MHz < 4 nV/\/Hz	DAC Resolution Sampling rate DNL, INL	6 bit 3456 MS/s < 0.5 LSB

Design Items VGA : Variable Gain Amplifier **ADC : Analog to Digital Converter DAC : Digital to Analog Converter**

Negative capacitance generator

VGA core circuit

2nd and 4th stage amplifiers.

>LPF function is implemented in VGA. S/P(1/8) and P/S(1/16) circuits are implemented in ADC and DAC respectively.

2. Variable Gain Amplifier Fine DC offset cancel >0 - 40dB gain range. Digital DAC BB DC offset feedback loop -Source degeneration resistors are controlled by 9bit DAC. 6b IGHz Bandwidth with LPF function. RF Rx ~~ Buffer ADC 2nc 3rc 4th 1.5 [GHz] Digital Negative capacitances generated DAC 1.3 BB by core circuit of the VGA Variable Gain Amps 9b -3dB Bandwidth 1.1 0-40 dB Proposed VGA Vor 0.9 Voo Von O 0.7 Without negative capacitance 0.5 192 256 320 Gain Control Code 64 0 128 -3 dB Bandwidth vs. gain control code of the VGA OV.m 5 Offset cancelling circuit VGA core circuit Normalized Gain [dB] 0 1st and 3rd stage amplifiers. V -5 V₀o-Von _**V**₀ŗ -10 W/o negative capacitance OV_{in} W/ negative capacitance -15 2nd x 2 + 1st order LPF -20

100

Negative capacitance used for increasing BW. -Fixed negative capacitance used for BW flatness.

384

1000

Frequency [MHz]

Frequency characteristic of the VGA at 20dB Gain

448

512

5. Measurement Results

