

Proposing

An Interpolated Pipeline ADC

Akira Matsuzawa

Tokyo Institute of Technology, Japan

Background

38GHz long range mm-wave system

Role of long range mm-wave

Optical fiber

Connect with mm-wave

Very flexible

38GHz long range mm-wave system

realized 1Gbps long range mm-wave systems

System configuration

Compatible with Gbit Ethernet Hole system is integrated with planar antenna

Mixed signal BB SoC

A mixed signal SoC has been developed to realize 64QAM (1Gbps) with BW of 260MHz.

Developed ADC

Developed new 10b ADC to address 64 QAM.

Interpolated pipeline scheme No need of high gain OP amps 10b, 320 MSps, 40mW ADC

Suitable for low gain and low V_{DD} scaled CMOS

M. Miyahara, A. Matsuzawa, VLSI-CS, 2011.

BER vs. SNR

BER for 64QAM has been reduced to the ideal

Tokyo Tech. Model Network

Ten mm-wave base stations in our campus

Expand the area to NEC (4km)

Challenge for 4km mm-wave communication

Outline

- Introduction
- Interpolation Techniques
- Circuit Implementation
- Measurement Results
- Conclusions

Conventional Pipelined ADC

Conventional pipelined ADC requires accurate MDAC

Pipelined ADC Conversion

Conventional MDAC

- High DC gain OpAmp

 Difficult to realize in scaled technology
- Closed-loop MDAC leads to lower speed

OpAmp gain and conversion error

380

Recent Works

- Digital compensation technique [1, 2]
 - Capacitor mismatch, gain error and opamp nonlinearity can be corrected
 - Simple analog circuit design
 - Foreground compensation
 - PVT variation degrade the performance
 - Long compensation time
 - Increase of test cost

[1] B. Murmann and B. E. Boser, Dec., 2003.[2] A. Verma and B. Razavi, Nov., 2009.

Proposed ADC

- Target : 10bit, F_s > 300 MS/s
- Interpolation and pipelined operation
 - -Moderate relative gain
 - **△G/G < 5% for 10bit**
 - Open-loop amplifiers can be used
 - No need of linearity compensation
 - -Insensitive to settling time
 - High speed
 - Low power

Interpolation Architecture

Interpolation Architecture

Interpolation Architecture

Interpolated Pipeline ADC Structure

Interpolation technique is used for 2-4th stage. Each stage has an 1-bit redundancy.

Interpolation methods

- Static current
- Good linearity
- Imbalance settling
- No static current

C_u

C_u

←to A_{2a} **←to A**_{2b}

C_p causes nonlinearity

- No static current
- Good linearity
- Heavy load

Proposed Weight Controlled Capacitor Array

Sub-ADC controls the capacitor weight. Load capacitance is reduced from $36C_u$ to $16C_u$ (3bit).

Weight Controlled Capacitor Array

Offset voltage can be cancelled in interpolation phase

24

Interpolated Output

Sub-ADC Structure

Gate-width-weighted interpolation comparators with capacitive offset calibration is used.

- Offset voltage < 2 mV (σ)

Requirements for An Amplifier

- Absolute Gain error ⇒ No error
- Offset voltage ⇒ DNL error
 - –Offset voltage < 1LSB</p>
 - Offset voltage can be negrected by output offset cancel technique.
- Gain mismatch ⇒ DNL error
- Linearity ⇒ DNL and INL error

Amplifier : Schematic

Amplifiers : Simulation results

1st stage $a_3/a_1 < 1.3$

2nd stage $a_3/a_1 < 6.2$

$$V_{\rm out} \approx a_1 V_{\rm in} - a_3 V_{\rm in}^3$$

14 14 2nd stage amplifier 2nd stage amplifier 12 12 10 1st stage amplifier 1st stage amplifier 10 Gain [dB] Gain [dB] 8 8 *f*_{-3dB} = 1.2GHz 6 6 $C_{\text{load}} = 320 \text{ fF}$ 4 4 2 2 0 0 -0.25 0.25 0 -0.5 0.5 10 100 1000 10000 1 *V*_{out} [V] **Frequency** [MHz] Output voltage vs. DC gain. Frequency vs. gain.

Gain matching requirement

Linearity Requirement

31

Chip photo

- 90 nm 10M1P CMOS technology
- Chip area of 0.46mm²

1120 μm

DNL, INL

This periodical error is due to bad layout, not essential issue.

Sampling Frequency vs. SNDR

Input Frequency = 1 MHz

Input Frequency vs. SNDR

Sampling Frequency = 320 MS/s SFDR, SNDR [dB] SFDR — SNDR Fin [MHz]

Performance summary

	This Work	[2]	[6]	[7]
Resolution (bit)	10	10	10	10
F _{sample} (MS/s)	320	500	205	320
V _{DD} (V)	1.2	1.2	1.0	-
Power (mW)	40	55	61	42
ENOB _{peak} (bit)	8.5	8.5	8.7	8.7
FoM _{Fs} / FoM _{ERBW} (pJ/cs)	0.35 / 0.77	0.31	0.65	0.36/0.44
Technology (nm)	90	90	90	90
Active Area (mm ²)	0.46	0.5	1	0.21
Amplifier type	Open	Closed	Closed	Closed
Linearity Compensation	No	Yes	No	Yes

[2] A. Verma and B. Razavi, IEEE J. Solid-State Circuits, vol. 44, Nov., 2009.

[6] S. Lee, Y. Jeon, K. Kim, J. Kwon, J. Kim, J. Moon, and W. Lee," ISSCC, 2007.

[7] H. Chen, W. Shen, W. Cheng, and H. Chen, A-SSCC, 2010.

Conclusions

- An interpolated pipelined ADC using open-loop amplifier has been proposed.
 - Interpolation architecture
 - **△G/G < 5% for 10bit**
 - Using simple open-loop amplifiers enables high speed operation
 - No need of a linearity compensation
 - Weight Controlled Capacitor Array
 - Load capacitance is reduced from $36C_u$ to $16C_u$
 - Offset voltage of the amplifier can be cancelled
 - 10bit, 320MS/s, 40 mW ADC has been realized

Future Prospect

- Issue: Need twice larger circuits
 - Same capacitance as for the conventional pipeline ADC can be used by modifying circuits.
 - Area and power can be reduced, since lower bandwidth is acceptable.
- Still need the pipelined ADC?
 - SAR ADC: lowest FoM, but low f_s and low resolution.
 - SAR-Pipeline: higher resolution, but lower f_s due to multi step conversions.
 - Interleaving: effective for low resolution ADC, but need totally large capacitance.