PursuingExcellence

A 20GHz Push-Push Voltage-Controlled Oscillator for a MM-wave Frequency Synthesizer

Tokyo Institute of Technology Department of Physical Electronics Matsuzawa & Okada Lab.

Teerachot Siriburanon

Outline

TOKYO TIECH Pursuing Excellence

- Background
- State-of-the-art 60GHz Local Oscillators
- Comparison of 20GHz vs 10GHz
- Proposed Schematic
- Measurement Results
- Performance comparison

Background

- 9-GHz unlicensed bandwidth at 60 GHz
- Several Gbps wireless communication

ΓΠ

2

Excellence

60GHz LO Architectures

60GHz QPLL

9GHz tuning range
 Low quality factor
 for capacitors

Poor Phase Noise

[1] IMEC, ISSCC 2009

30GHz PLL + Polyphase Filter

- 2nd harmonic utilized
- Polyphase filter for quadrature generation

High power consumption I/Q mismatch

[2] UCB, ISSCC 2009

20GHz PLL + Injection Locked Osc.

ΓΟΚΥΟ

Pursuing Excellence

best phase noise reported

[3] Titech, JSSC 2011

Comparison of 10GHz and 20GHz 4

relatively higher

[4] Murakami, et al., MWSCAS 2009

Pursuing Excellence

$$L(f_{offset}) = 10 \log \left[\frac{2kT}{P_{sig}} \left(\frac{f_o}{2Q_{tank} f_{offset}} \right)^2 \right]$$

Quality factor of resonator:

$$Q_{\tan k} = \frac{Q_L \cdot Q_C}{Q_L + Q_C}$$

Proposed VCO in 60GHz LO

- Higher Quality Factor of tank
- Less concern for parasitics
- High frequency prescaler
 can be eliminated
- 😕 Low output power
- 😕 Large Area

$$PN_{ILO} = PN_{10GHzPLL} + 15.5dB$$

	10GHz	60GHz
PN requirement (16QAM)	-105.5 dBc/Hz	-90 dBc/Hz
Tuning range	9.5-11 GHz	57-66 GHz

5

Proposed Schematic

6

20GHz Resonator

Impedance of resonator can be tuned by 2-bit capacitor

Improves1) phase noise (as tail filtering)*2) Improve output power

*[5] E. Hegazi, et al., JSSC 2001

ΓΟΚ

llence

Tail Modulation

This mechanism acts as tail feedback modulation [3]

[3] A. Musa, et al., JSSC 2011

ΓΟΚ

2012/9/12

```
Matsuzawa
& Okada Lab.
```

8

Measurement Result

Die Photo

Phase noise at 19.1GHz -105dBc/Hz @ 1MHz offset

9

Pursuing Excellence

ΓΟΚ

PLL Performance Comparison

гакуа тес

Pursuing Excellence

	Features	CMOS Tech.	Frequenc y [GHz]	Phase Noise [dBc/Hz]	Power [mW]	Output type
[1]	QVCO@60GHz+ Foreground Calibration	45nm	57 - 66	-75@1MHz	78	Quad.
[2]	Push-push VCO@30GHz+ Hybrid Coupler	65nm	59.6 - 64	-73@1MHz	76	Quad.
[3]	VCO@20GHz	65nm	17.9-21.2	-105@1MHz	19.2	Diff.
	Sub-harmonic Injection	65nm	58 - 65.4	-96@1MHz	80	Quad.
This	Push-push VCO@10GHz	65nm	16.3-19.3	-105@1MHz	7.5	Diff.
	Push-push VCO@10GHz + 60GHz ILO [3] (based on calculation)	65nm	-	-96@1MHz	-	Quad.

[1] K. Scheir, *et al.*, ISSCC 2009 [3] A. Musa, *et al.*, JSSC, 2011 [2] C. Marcu, et al., ISSCC 2009

Conclusion

- A 10GHz QVCO for 20GHz push-push operation is implemented in 65nm CMOS process.
- It shows capability of maintaining low phase noise while consuming 14% less power consumption than previously-implemented 20GHz VCO for 60GHz sub-harmonic injection LO

Thank you for your attention

