

A 0.5 V, 420 MSps, 7-bit Flash ADC Using All-Digital Time-Domain Delay Interpolation

<u>James Lin</u>, Ibuki Mano, Masaya Miyahara and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Outline

- Motivation
- Background
- Circuit Design
- Experimental Results
- Conclusion

Motivation

- Ultra-low-voltage operation
 - Immediate power saving potential
 - Explore new circuit techniques for future technology

Background

- Flash ADC's advantages
 - Shortest latency

→Attractive for systems with feedback loops: clock data recovery (CDR), decision feedback equalizer (DFE)

- Disadvantages
 - With increasing resolution

→Exponential increase

→Power consumption
→Area
→Input capacitance

Time-Domain Delay Interpolation

 Time-domain interpolation can enhance the resolution of a flash ADC without the severe trade-offs [2]

[2] Y. S. Shu, VLSI Circuits 2012.

Offset voltage vs. ENOB

 To limit the ENOB degradation to less than 0.5 bit → < 1 mV(σ) offset voltage is required

Mismatch Calibration at ULV

- Conventional varactor [3] calibration degrades with supply voltage lowering
- The mismatch of the comparator can be problematic at the ultra-low supply voltage

Calibration Methods	None	Current	Varactor	Time	MOM
Offset [mV(σ)]	10.1	1.32	5.79	1.77	0.85
Power @ 500 MHz [mW]	14.5	41.3	21.4	24.5	17
Delay [ps]	365	450	756	556	625

[3] V. Giannini, et al., ISSCC 2008.

MOM Calibration

 Using MOM capacitors and switches, the offset voltage can be suppressed to less than 1 mV(σ)

6-bit ADC Core

 6-bit ADC core with delay interpolation using a modified 5-bit core from [4]

[4] M. Miyahara, A-SSCC 2010.

ADC Structure

7-bit ADC block diagram consists of 4 × 6-bit cores

Measured DNL and INL

(Operating at 100 MSps with a 0.5 V supply)

Measured SFDR and SNDR

- SFDR and SNDR vs. sampling frequency
- SNDR vs. input frequency

Performance Comparison

	[5]	[6]	[7]	This Work	
Architecture	Subrange	Subrange	Pipeline	Flash	
Resolution [bit]	7	7	10	7	
<i>f</i> s [MSps]	2200 (4 ch)	300 (1 ch)	10 (1 ch)	420 (2 ch)	210 (1 ch)
Process [nm]	65	65	90	90	
Supply [V]	1	1.2	0.5	0.5 (V _{BS} = 0.5)	
SNDR [dB]	36.1	40.5	48.1	35	36
Power [mW]	40	2.3	2.4	4.1	2.1
FoM [fJ/cs.]	280	88	940	906	195

[5] I. N. Ku, *et al.*, CICC 2011. [7] J. Shen, *et al.*, JSSC 2008. [6] U. F. Chio, *et al.*, ESSCIRC 2011.

Conclusion

- All-digital time-domain delay interpolation enhances the resolution of a flash ADC without the undesirable trade-offs
- MOM calibration is effective for ultra-lowvoltage circuits
- Ultra-low-voltage proves to be a promising method to reduce power consumption

Thank you for your interest!

James Lin, james@ssc.pe.titech.ac.jp