

Current status and future prospect of analog and RF VLSI design

Akira Matsuzawa

Tokyo Institute of Technology O-Okayama, Meguro-ku, Tokyo 152-8552, Japan

Outline

• RF IC design

- 60GHz CMOS transceiver
- Essence of millimeter wave IC design

ADC design

- Flash ADC with dynamic comparator
- SAR ADC with dynamic comparator
- Interpolated pipeline ADC

• Discussion and summary

RF IC design

60GHz CMOS transceiver

Usage model

Giga bit ultra-fast data transfer systems around 60GHz. 4 ch. 1.8GHz BW provides 3.5—7.0 Gbps data transfer. Low power and small size are required

Equipment image

Two chips solution on one PCB with antenna

Low cost system

Gain: 5.6 dBi

60GHz Transceiver: Block Diagram

Die Photo

Chip with antenna in package

The 60GHz RF chip are mounted on the antenna in package

RF+BB Measurement Setup

3.5Gb/s QPSK (max 8Gb/s)

Channel	ch.1	ch.2	ch.3	ch.4	Max rate	
Constellation	· 後 - 後 - 後 - - - - - - - - - -	*		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	*			· () () () () () () () () () ()		
Spectrum	10 0 -10 -20 -30 -40 55.08 58.32 61.56	10 0 -10 -20 -30 -40 57.24 60.48 63.72	10 0 -10 -20 -30 -40 59.40 62.64 65.88	10 0 -10 -20 -30 -40 61.56 64.80 68.04	$ \begin{array}{c} 10 \\ 0 \\ -10 \\ -20 \\ -30 \\ -40 \\ 59 40 \\ 62 64 \\ 65 88 \end{array} $	
Back-off	3.8dB	3.9dB	4.4dB	5.0dB	4.4dB (ch.3)	
Data rate*	3.5Gb/s	3.5Gb/s	3.5Gb/s	3.5Gb/s	8.0Gb/s (ch.1-ch.4)	
EVM	-21.2dB	-21.6dB	-21.4dB	-20.1dB	-17.3dB (ch.3)	
Distance**	1.3m	1.4m	1.6m	1.6m	>0.01m (ch.3)	

*The roll-off factor is 0.25. The bandwidth is 2.16GHz except for Max rate. **Maximum distance within a BER of 10⁻³. The 6-dBi antenna in the package is used.

7.0Gb/s 16QAM (max 10Gb/s)

Channel	ch.1	ch.2	ch.3	ch.4	Max rate
Constellation	法法法法法	(1)) (1)) (1)) (1)) (1)) (1)) (1)) (1))	察位察官 安告 安德 安保 安德	冷 矢 清 安 西 安 安 夜 安 唐 宋 安 安 泉 书 荷	法 验 郎 谢 强 察 察 察 安 安 安 安 安 安 安 安 安
Spectrum	10 0 -10 -20 -30 -40 55.08 58.32 61.56	10 0 -10 -20 -30 -40 57.24 60.48 63.72	10 0 -10 -20 -30 -40 59.40 62.64 65.88	10 -10 -20 -30 -40 -40 -56 -64.80 -68.04	$ \begin{array}{c} 10\\ 0\\ -10\\ -20\\ -30\\ -40\\ 59,40\\ 62,64\\ 65,88\\ \end{array} $
Back-off	4.4dB	4.6dB	5.0dB	5.7dB	5.0dB (ch.3)
Data rate*	7.0Gb/s	7.0Gb/s	7.0Gb/s	7.0Gb/s	10.0Gb/s (ch.3)
EVM	-23.0dB	-23.0dB	-23.3dB	-22.8dB	-23.0dB (ch.3)
Distance**	0.3m	0.5m	0.5m	0.3m	>0.01m (ch.3)

*The roll-off factor is 0.25. The bandwidth is 2.16GHz except for Max rate.

**Maximum distance within a BER of 10⁻³. The 6-dBi antenna in the package is used.

Performance Comparison

12

	Integration	#ch.	Data rate (16QAM)	P _{DC} (Tx/Rx)
Tokyo Tech [1]	RF (Direct)	2	11Gb/s [1] 16Gb/s [4]	252mW / 172mW
CEA-LETI [5]	RF (Hetero)	4	3.8Gb/s	1,357mW / 454mW
SiBeam [6]	RF (Hetero)	2	3.8Gb/s	1,820mW / 1,250mW
Tokyo Tech (This work)	RF (Direct) + analog /digital BB	4	RF: w/ wider-BW 10Gb/s RF+BB: 6.3Gb/s	RF: 319mW / 223mW BB: 196mW / 398mW

[1] K. Okada, et al., ISSCC 2011 [4] H. Asada, et al., A-SSCC 2011 [5] A. Siligaris, et al., ISSCC 2011 [6] S. Emami, et al., ISSCC 2011

Recent measurement results

Attains the world fastest data rate of 16Gbps in wireless systems

Constellation	• • 9506 points	•••• •••• •••• 19912 points	13502 points	42024 points
Modulation	QPSK	16QAM	QPSK	16QAM
Symbol rate	1.76GS/s	1.76GS/s	5.0GS/s	4.0GS/s
Data rate	3.52Gb/s	7.04Gb/s	10.0Gb/s	16.0Gb/s
EVM (withDFE)	-30.5dB	-28.2dB	-15.2dB	-16.1dB

Performance Comparison

Attains the world fastest data rate of 16Gbps in wireless systems

14

Essence of millimeter wave IC design

Gain and Noise; f_{max} and f_T

Gain and noise are mainly determined by f_{max} and f_{T} of Transistor

- \otimes Lower gain
 - \otimes MAG is inversely proportional to the logarithm of the operating frequency f_c.
- ⊗ Higher noise
 - \circledast ${\rm NF}_{\rm min}$ is proportional to the operating frequency ${\rm f_c}.$

 $W_{\rm f}$ =2.5µm, $N_{\rm f}$ =32, $V_{\rm gs}$ =0.8V and $V_{\rm ds}$ =0.8V.

$$G_{\max} \approx rac{f_{\max}}{f_c}$$

$$NF_{\min} \approx 1 + \left(\frac{f_c}{f_T}\right) \sqrt{1.3g_m(R_g + R_s)}$$

2013/1/10

Ning Li, Tokyo Tech

 f_{max} and f_{T} of MOS transistor are expected to increase continuously

- **O** Bulk CMOS
- **∆** Ultra-Thin-Body Fully-Depleted (UTB FD) SOI
- Multi-Gate MOSFETs

ITRS RFAMS 2011.

Amplifier design

Amplifier design; accurate sizing, biasing, impedance matching and decoupling.

A several GHz oscillation will occur, if the feedback passes are made.

Low loss TR line

Transmission line, transformer, and decoupling capacitor are developed.

Transformer **Transmission line** out+ in **0.8dB/mm** Manually-placed dummy metal V_{bias} 80µm MIM TL signal(10µm) GND slit PGS **S**dummy GND out-5μm 1.12µm gap(15μm) GND **Decoupling capacitor GND GND** M1&M2 shield

Gain flatness

A gain flatness causes ISI for QAM signal and results in increase of BER. Adjusting the impedance matching to reduce the gain flatness.

Modeling (De-embedding) tequnique 21

A. M. Mangan, et al., IEEE Trans. on Electron Devices, vol. 53, no. 2, pp.235-241, Feb. 2006 N. Takayama, K. Okada, and A. Matsuzawa, et al., IEEE Asia-Pacific Microwave Conference (APMC), Singapore, Dec. 2009. An accurate device modeling with proper measurement method is vitally important for very high frequency circuit design. The performance of millimeter wave circuits is mostly determined by The accuracy of modeling for passive and active devices.

60GHz CMOS LNA

A multi stage non-cascode CMOS LNA realizes wide gain flatness.

Comparison in LNA

	[1]	[2]	[3]	[4]	[5]	[6]	This work
Tech.	90nm	90nm	90nm	90nm	65nm	90nm	65nm
Тороlоду	CS	Cas.	Cas.	CS	Diff. Cas.	Cas.	CS-CS
#Stage	3	2	2	2	3	3	4
BW [GHz]	5	6	8	-	7.7	14	17
Gain [dB]	15.0	14.6	15.5	12.2	19.3	20.0	24
NF [dB]	4.4	5.5	6.5	6.5	6.1	6.8	4.0-7.6
Power [mW]	3.9	24	86	10.5	35	36	30

[1] E. Cohen, et al., RFIC 2008 [2] T. Yao, et al., JSSC 2007 [3] S. Pellerano, et al., JSSC 2008 [4] B. Heydari, et al., JSSC 2007 [5] C. Weyers, et al., ISSCC 2008
[6] Y. Natsukari, et al., VLSI Circuits 2009

Ning Li, K. Okada, and A. Matsuzawa et al., ESSCIRC, Seville, Spain, pp.342-345, Sep. 2010.

Cross coupled feedback capacitors 25

W. L. Chan, et al., ISSCC. Tech. Dig., pp. 380–381, Feb. 2009.

Feedback signal and stability

Feedback signal is suppressed by the cross coupled capacitors and this increase the stability of amplifier.

Required phase noise of IQ-VCO for 16QAM₂₇

A phase noise of LT. -90dBc/Hz@1MHz is required for 16QAM systems

A reported phase noise of 60GHz IQ VCO is -76dBc/Hz @1MHz at most

K. Scheir, et al., ISSCC, pp. 494-495, Feb. 2009.

Key technology: Quadrature ILO

28

Quadrature injection locked 60GHz oscillator with 20GHz PLL Low phase noise of -96dBc/Hz @1MHz.

Injection locking method

Injection locking method is a very important circuit technique for high frequency signal generation and frequency divider. Phase noise of the oscillator is mandated by the injected signal.

150GHz CMOS injection locked frequency divider 30

The injection locking methd is useful for high frequency divider.

Technology	40nm 1P8M CMOS		
Operating frequency	133.3GHz – 151.3GHz		
Phase noise	-135.6dBc/Hz @1MHz offset		
Power dissipation	12mW @V _{DD} =1.6V		
Circuit size	$8.8 imes 5.3 \mu m^2$		

Divide the pulses \rightarrow control oscillation frequency

M. Fujishima, et al., SSDM 2012

Further high frequency: CMOS Oscillator 31

Higher frequency can be obtained by CMOS oscillator, using push-push method.

410 GHz

E. Seok, *et al*., ISSCC 2008.

45nm CMOS Push-push Oscillator 205GHz oscillation with 410GHz harmonic output. 11mA @ 1.5V

486 GHz

O. Momeni, et al., JSSC 2011.

65nm CMOS 486GHz using Triple-Push oscillation -7.9dBm from 61mW Pd.

Issue: Phase control of injection locking oscillator 32

Issue: Hot carrier Injection

Power supply voltage control must be needed to increase the life time

[1] E. Takeda et al., IEDL 1983

Future issue: Loss in transmission line 34

Reducing the height of the top metal will increase the power loss in the transmission line.

ADC design

ADC performance and the data rate

Data rate is proportional to the product of f_s and N

 $D_{\textit{rate}} \approx N \cdot f_s$

If the signal bandwidth is fixed, increase of resolution is required to increase the data rate.

Shannon's theory to determine the communication capacity

$$C = BW \log_2 \left(1 + \frac{P_{\rm S}}{P_{\rm N}}\right)$$

Higher data-rate can be realized by higher multi-level modulation. It result in increase of ADC resolution.

Example: 38GHz 1Gbps fixed point wireless,7

38GHz 1Gbps fixed point wireless system has been developed.

Compatible with Gbit Ethernet Hole system is integrated with planar antenna

Mixed signal BB SoC

A mixed signal SoC has been developed to realize 64QAM (1Gbps) with BW of 260MHz.

ADC performance and **BER**

Increase of ADC performance reduces BER of 64 QAM

64QAM

ADC architectures

Flash, SAR, pipelined, and sigma-delta are four major ADC architectures

ADC architecture and covered area

Covered performance area of comparator based ADCs have been increased. However OpAmp based ADCs are still needed for higher resolution.

Comparator based ADC design

Flash ADC

Developed baseband SoC and flash ADC 43

Baseband SoC for the 60GHz transceiver has been developed. ADC, DAC, VGA, and PLL, are integrated in 40nm CMOS.

Flash ADC

- Flash ADC is still reasonable for GHz and low resolution conversion.
- Comparator determines the ADC performance

Offset mismatch mainly determines the effective resolution.

 $N \leq 6$

The smaller is the better

Use smaller transistor to reduce energy and compensate mismatch digitally

Larger transistor is required to reduce mismatch voltage and results in increase of gate area and consumed energy.

Proposed dynamic comparator and offset voltage 46

Digital offset mismatch calibration methods₄₇

Y. Asada, K. Yoshihara, T. Urano, M. Miyahara and A. Matsuzawa,

"A 6bit, 7mW, 250fJ, 700MS/s Subranging ADC" A-SSCC, pp. 141-144, Nov. 2009.

Effect of digital mismatch compensation 48

M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, "A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs," A-SSCC, Nov. 2008.

Area comparison

Penalty area for digital compensation will be reduced with technology scaling.

Flash ADC for 60GHz transceiver

VGA Gain range	0-40 dB
ADC Resolution	5 bit
Sampling rate	2304 MS/s
Power	VGA : 9 mW
Consumption	ADC : 12 mW [*]
DNL, INL	< 0.8 LSB
SNDR	26.1 dB
FoM of ADC	316 fJ/convs

*single channel inc. S/P

50

ADC Comparison

Low power & small size ADC has been developed for 60GHz transceiver.

	Architecture	Cal.	fs [GS/s]	SNDR [dB]	Power [mW]	FoM [fJ/-c.s.]	Process [nm]	Area [mm ²]
[1]	Flash	-	3.5	31.2	98	946	90	0.149
[2]	SAR	Internal	2.5	34.0	50	489	45	1
[3]	Folding	Internal	2.7	33.6	50	474	90	0.36
[4]	Pipeline, Folding	External	2.2	31.1	2.6	40	40	0.03
[5]	Flash	Internal	2.88	27.8	36	600	65	0.25
This work	Flash	Internal	2.3	26.1	12	316	40	0.06

[1] K. Deguchi, et al., VLSI Circuits 2007 [2] E. Alpman, et al., ISSCC 2009
[3] Y. Nakajima, et al., VLSI Circuits 2007 [4] B. Verbruggen, et al., ISSCC 2010
[5] T. Ito, et al., A-SSCC 2010

0.5V Flash ADC

320μm

5bit 0.5V 600MSps Flash ADC has been developed.

S/H circuits use gate boosted switches.

Forward body bias is used to decrease gate delay.

M. Miyahara , J. Lin, K. Yoshihara, and A. Matsuzawa, "A 0.5 V, 1.2mW, 160fJ, 600 MS/s 5 bit Flash ADC" A-SSCC, pp. 177-180, Nov. 2010.

Reference #	[7]	[8]	[9]	[10]	This work
Resolution (bit)	5	5	5	5	5
fs (GS/s)	0.5	1.75	1.75	0.06	0.6
SNDR (dB)	26	30	30	26	27
Pd (mW)	5.9	2.2	7.6	1.3	1.2
Active area (mm ²)	0.87	0.017	0.03	-	0.083
Vdd (V)	1.2	1	1	0.6	0.5
FoM(fJ)	750	50	150	1060	160
CMOS Tech. (nm)	65	90	90	90	90
Architecture	SAR	Fold+Flash	Flash	Flash	Flash

FoM_{Fmax} = 160fJ @ 600MSps FoM_{Best} = 110 fJ @ 360MSps

[7] B. P. Ginsburg, J. Solid-State Circuits 2007.

[8] B. Verbruggen, ISSCC 2008.

[9] B. Verbruggen, VLSI Circuits 2008.

[10] J. E. Proesel, CICC 2008.

Comparator based ADC design

: SAR ADC

Basic idea for low energy analog design 54

Conventional analog circuit consumes larger energy. Dynamic circuits doesn't consume larger energy.

CMOS: Consumed energy is independent of the delay time.

SAR ADC

SAR can be designed to consume no static power.

SAR can realize larger signal swing compared with pipeline ADC.

FoM and FoM2

High SNDR over 70dB and low FoM of less than 50fJ looks not easy.

Linearity of SAR ADC

Non-linearity is caused by CDAC, and it can be calibrated digitally. Therefore, a small capacitance determined by noise can be used.

Noise of dynamic comparator

Basic noise of the dynamic comparator is determined by load capacitor

A. Matsuzawa," IEEE 8th International Conference on ASIC(ASICON), pp. 218-221, Oct. 2009.

Gain and noise of the dynamic amplifier 59

Node capacitances should be increased to realize higher ADC resolution. This results in increase of consumed energy of the dynamic comparator.

Fundamental Energy of sampling circuit 61

Fundamental energy of sampling is often used.

However this neglects the power for comparison.

Quantization noise power

 $V_{qn} = \frac{V_{FS}}{Q^N}$

Quantization voltage

$$P_{qn} = \frac{V_{qn}^2}{12} = \frac{V_{FS}^2}{12 \cdot 2^{2N}}$$

Noise balance

$$V_n^2 = P_{qn}$$

Capacitance

$$C = 12 \mathrm{k} T \frac{2^{2N}}{V_{FS}^2}$$

Electrical energy=Thermal energy

$$\frac{1}{2}CV_n^2 = \frac{1}{2}kT \quad \therefore \quad V_n^2 = \frac{kT}{C}$$

P_d of sampling circuit

$$E_d = 2CV_{FS}^2 = 24 \mathrm{k}T2^{2N}$$

Energy consumption of ADC

Consumed energy of ADC is mainly determined by the resolution. Energy of ADC is reaching 100x of the fundamental sampling energy, and 10x of the fundamental ADC energy consumption.

Noise in comparison phase

The switch resistance generates the noise and the noise voltage at the comparator is large due to the small parasitic capacitance.

Dynamic amplifier

Transient noise simulation

Input noise is increased with frequency bandwidth, if C_p is very small. If Cp exists, it determines noise voltage.

C_p=0

Noise in comparison phase

Clear tradeoff between noise, speed and energy.

For low noise voltage

- 1) Large sampling capacitance
- 2) Small switch resistance
- 3) Long integration time
- 4) Large Load capacitance
- 5) Small latch noise
- 6) Large voltage swing
- 7) Small gate effective voltage
- 1) Sampling noise of C_s

2)Effective noise caused by the switch

- 3) Noise by the dynamic amplifier
- 4) Noise by from the latch

$$\overline{V_{n1}^2} = \frac{2kT}{C_s}$$
$$\overline{V_{n2}^2} = \frac{4kTR_s}{\left(1 + \frac{C_p}{C_s}\right)^2} \frac{1}{T_d}$$

$$\overline{V_{n3}^2} = \frac{4kT\gamma}{C_L} \frac{V_{eff}}{V_{os}} = \frac{4kT\gamma}{g_m T_d}$$
$$\overline{V_{n4}^2} = \frac{V_{n_latch}^2}{G^2} = \frac{V_{eff}^2}{4V_{os}^2} V_{n_latch}^2$$

Dynamic response of reference circuit 66

Dynamic response of the reference circuit affects the linearity of the ADC.

Large decoupling capacitance is required to suppress this effect. Impedance design (IC, bonding, package, board, etc.) becomes important.

MOM capacitance

MIM capacitance has a good matching, MOM is not so,,,. However matching issue can be solved by digital mismatch compensation. Capacitor density is increased by technology scaling. Very small capacitance (<0.1fF) is available and useful for the mismatch comp.

OpAmp based ADC design

Interpolated pipeline ADC

Conventional Pipelined ADC

Pipelined ADCs are still needed for high resolution and high speed ADC.

However, conventional pipelined ADC requires accurate MDAC

69

OpAmp gain and conversion error 70

G > 6N + 10 (dB)Gain>70dB **10bit ADC** Large error occurs 40dB gain

Developed ADC

Developed new 10b ADC to address 64 QAM.

Interpolated pipeline scheme No need of high gain OP amps 10b, 320 MSps, 40mW ADC

Suitable for low gain and low V_{DD} scaled CMOS

M. Miyahara, A. Matsuzawa, VLSI-CS, 2011.

Pipelined interpolation

The interpolation can realize the fine A/D conversion. No accurate absolute gain is required.

The accuracy of cross points depends the gain mismatch, and does not depend the absolute gain

Gain of amplifiers is about 4
Proposed Weight Controlled Capacitor Array

73

Proposed weight controlled capacitor array realizes accurate interpolation. Furthermore, the offset voltages of amplifiers are cancelled.

Low gain Amplifier

1st stage amplifier require good linearity =>CMOS input with source degenerations

G= 4 Gain mismatch < $2.1\%(3\sigma)$ V_{DD} **V**_{DD} R_{I} **R**s **R**s V_{om}∢ V_{inm} **V**_{inp} Vom V_{op} R_{I} R **V**_{inp}**O R**_S **R**_S **V**_bO $V_{\rm h}$ V_{ss} V_{SS} 1st stage amplifier 2nd stage amplifier

 R_{L}

 $V_{\rm op}$

-O V_{inm}

Performance summary

	This Work	[2]	[6]	[7]
Resolution (bit)	10	10	10	10
F _{sample} (MS/s)	320	500	205	320
V _{DD} (V)	1.2	1.2	1.0	-
Power (mW)	40	55	61	42
ENOB _{peak} (bit)	8.5	8.5	8.7	8.7
FoM _{Fs} / FoM _{ERBW} (pJ/cs)	0.35 / 0.77	0.31	0.65	0.36/0.44
Technology (nm)	90	90	90	90
Active Area (mm ²)	0.46	0.5	1	0.21
Amplifier type	Open	Closed	Closed	Closed
Linearity Compensation	No	Yes	No	Yes

[2] A. Verma and B. Razavi, IEEE J. Solid-State Circuits, vol. 44, Nov., 2009.
[6] S. Lee, Y. Jeon, K. Kim, J. Kwon, J. Kim, J. Moon, and W. Lee," ISSCC, 2007.
[7] H. Chen, W. Shen, W. Cheng, and H. Chen, A-SSCC, 2010.

Sigma-delta ADC

Sigma delta ADC can suppress only the quantization noise of ADC. The performance is limited by the input error voltage. For wide band signal, SD ADC may not be efficient architecture.

$$N_q = \left(\frac{v_q}{2}\right) \frac{1}{3\pi(2L+1)} \left(\frac{\pi}{OSR}\right)$$

Quantization noise can be suppressed so much

Error voltage at input summing node can't be suppressed so much. Suppressed by only OSR.

SNR and P_d od SD ADC and SAR ADC

SNR and Power dissipation of wide band (multi-bit) SAR ADC are Not attractive. SAR ADC will reach the SNR and exhibit very low power consumption.

77

SAR Pipelined ADC

For wide fb and high SNDR ADC, SAR-Pipelined ADC is very attractive.

It can relax the requirement of settling time and noise of comparator

10bit, 500MSps, 8.2mW, FoM of 34fJ

Summary: RF

- 60GHz CMOS Transceiver has been realized
- Technology scaling increases operation frequency to several 100GHz
- Accurate device modeling is very important
- Wide band width with proper matching and low phase noise of high frequency oscillator are required for high speed data transfer.
- Injection locking method is very innovative method to generate low phase noise high frequency signals and to realize frequency divider.
- Accurate phase control, address the HCI issue are next challenge.

Summary: ADC

• Flash ADC

- Smaller is the better for Low FoM
- Digital mismatch compensation tech. should be used

• SAR ADC

- Concern the comparator noise
- Remind the tradeoff (Noise, speed, power)
- Take care of reference circuits

• Pipelined ADC

- Proposed interpolated pipeline ADC offers good solution
- Future of ADC
 - ADCs will be unified by SAR ADC.