

Akira Matsuzawa and Kenich Okada

Tokyo Institute of Technology O-Okayama, Meguro-ku, Tokyo 152-8552, Japan

Outline

- Tokyo Tech mm-wave project
- 60GHz indoor mm-wave system
- 38GHz outdoor mm-wave system
- Summary

Mm-wave project

Developing mm-wave systems and SoCs to address the future wireless big bang.

FY2007-FY2011

1. 60GHz, Indoor 3-10 Gbps -- 10m

2. 38GHz, Outdoor 0.6-1.0Gbps 1km – 4km

Project members and roles

Three labs. in Tokyo Tech. and five companies

60GHz indoor mm-wave system

Indoor system: Usage model

Giga bit ultra-fast data transfer systems Low power and small size are important

System block diagram

Equipment image

Two chips solution on one PCB with antenna

Low cost system 1 328-19 <t

Gain: 5.6 dBi

60GHz CMOS transceiver chip

A direct conversion method is employed to reduce power and complexity.

Die Photo

Communication test setup

Low gain antenna in package is used for the test

Basic performance

Low power, low phase noise, and low NF

Тх			
CG	18.3dB	Rx	
P _{1dB}	9.5dBm	CG	17.3dB (high-gain mode)
PSAT	10.9dBm		4.7dB (low-gain mode)
PAE	8.8% (only	NF	<6.8dB (high-gain mode)
	for PA)	IIP3	-5dBm (only for LNA)
P _{DC}	186mW	P _{DC}	106mW

PLL

Frequency	17.9-21.2GHz			
Phase Noise through Tx @60.48GHz	-94.2dBc/Hz @1MHz-offset			
Ref. spur	<-58dBc			
Pout	-2dBm			
P _{DC}	66mW			

The total Pd of system involving base band chip is about 500mW

Modulation Characteristics

Realizes every modulations for IEEE 802.15.3c.

Constellation	1585 points	• • • • • • • • • • • • • • • • • • •	4755 points	6340 points
Modulation	BPSK	QPSK	8PSK	16QAM
Data rate 2.16GHz-BW	1.76Gb/s	3.52Gb/s	5.28Gb/s	7.04Gb/s
EVM	-18dB (-24dB with DFE)	-18dB (-28dB with DFE)	-17dB	-17dB
Distance (BER < 10 ⁻³) 0.5–274cm 0.		0.5–270cm	0.5–20cm	0.5–17cm

8Gb/s(QPSK) and 11Gb/s(16QAM) @ wider-BW

Progress of data rate in 60GHz

The transceiver attained over 10Gbps

Key technology: Quadrature ILO

15

Quadrature injection locked 60GHz oscillator with 20GHz PLL

Low phase noise of -96dBc/Hz @1MHz.

60GHz Quadrature PLL

Best phase noise is achieved.

58-63GHz, -96dBc/Hz-1MHz offset

38GHz outdoor mm-wave system

Role of outdoor mm-wave

Optical fiber

Connect with mm-wave

Very flexible

18

38GHz outdoor mm-wave system

Already realized 1Gbps outdoor mm-wave systems

19

System configuration

Compatible with Gbit Ethernet Hole system is integrated with planar antenna

Mixed signal BB SoC

A mixed signal SoC has been developed to realize 64QAM (1Gbps) with BW of 260MHz.

Developed ADC

Developed new 10b ADC to address 64 QAM.

10b, 320 MSps, 40mW ADC

New ADC architecture

No interleaving No double sampling No OpAmp No calibration

750 *µ* m

38GHz High gain planar antenna

Developed high: gain and isolation planer antenna

- Mea.

39.5

40.0

BER vs. SNR

BER for 64QAM has been reduced to the ideal

C/N vs 64QAM_BER on B-B pair

Tokyo Tech. Model Network

Ten mm-wave base stations in our campus

25

Expand the area to NEC (4km)

Challenge for 4km mm-wave communication

Model network in Tokyo

Outdoor mm-networks can cover the Tokyo metropolitan area

Weather variation and availability ²⁸

Watch weather and mm-wave network condition

Future UHS network with mm-wave 29

Mm-wave will realize real high speed networks collaborating with optical and wireless technology

- Tokyo Tech now developing 60GHz indoor and 38GHz outdoor systems, CMOS RF and ADC/DAC for BB chips
- 60GHz CMOS direct conversion transceiver chip attained 11Gbps data rate
- 38GHz 1Gbps outdoor mm-wave system attained 1Gbps data rate with bandwidth of 260MHz for 4km distance communication

This work was partly supported by "The research and development project for expansion of radio spectrum resources" of the Ministry of Internal Affairs and Communications, Japan. The author is grateful to the members of the project, especially to Prof. Ando (Project leader), Prof. Suzuki, Prof. Hirokawa, Prof. Suyama, Prof. Hirano, Prof. Miyahara, Dr. Hirade, Mr. Iwamoto, Dr. Zhang, Dr. Suga of Tokyo Institute of Technology, Dr. Taniguchi and Dr. Ozawa of Japan Radio Co., Ltd, Dr. Fukuzawa and Dr. Noda of Sony, Dr. Matsunaga of NEC, Dr. Hirachi of AMSYS and Mr. Koyama of WILLCOM.

Backup slides for questions