Background and Motivation

This research is supposed to implement the most precise CMOS readout LSI in the world for 3D charged particle tracking applications by using standard deep sub-micro CMOS process.

Pixel Schematic of Qpix v.1

QPIX: Quad information / Quasi-3D / Q (Charge) information provided **PIX**el readout LSI

Chip Implementation

Pixel Layout

- 130 μm x 140 μm active circuitry
- large pixel pad
- As an charge-collecting pad when used in gas chambers
- As a bonding pad for flip-chip bump bonding with diverse sensors

(1) 10-bit SAR ADC; (2) TOT counter; (3) 10-bit register for ADC; (4) 5-bit calibration register for the amplifier; (5) TOF counter; (6) pixel control logic circuit; (7) 4-bit calibration register for comparator; (8) control signal buffers; (9) comparator; (10) the amplifier and the integrator; (11) pixel pad; (12) bonding point for flip-chip bump bonding.

Chip Microphoto

- \bullet 0.18 μm CMOS process, 400 pixels
- Compact high speed readout structure: 240 Mbps
- Suitable for large area applications
 - 16 mm² active detection area (64% of the total chip surface)

(1) 20 x 20 pixel matrix;
(2) wire bonding pads and their ESD for power supplies and input/output signals;
(3) periphery circuits including the chip control logic circuit, the bias circuit, and the 20-bit FSR.

Measurement Results

Demonstrates its ability in 3D tracking detector

*Offset charge is caused by large paracitic capacitance in measurement system.

a¹1.en

15

такуа тесн

	Qpix v.1	Qpix v.0	Timepix	Future work
Number of Pixels	20 x 20	2 x 8	256 x 256	20 x 20
Pixel dimensions	200 x 200 μm ² (Pixel pad included)	140 x 200 μm ² (No pixel pad)	50 x 50 μm²	200 x 200 μm ² (Pixel pad included)
Dynamic range	10 fC ~ 1.5 pC	100 fC ~ 1.0 pC	0.1 fC ~ 12 fC	1 fC ~ 150 fC
Comp. threshold	35 fC	245 fC	0.1 fC	1 fC
Readout information	TOF: 14 bits, 10 ns	TOF: 14 bits,10 ns	14 bits, 10 ns	TOF: 14 bits, 10 ns
	TOT: 8 bits, 10 ns	TOT: 8 bits, 10 ns	(TOF or TOT or Photon counter)	TOT: 8 bits, 10 ns
	ADC: 10 bits, 10MSps	ADC: 6 bits, 10MSps	None	ADC: 10 bits, 10MSps
Power/channel	187.5 μW	350 μW	6.5 μW + 7 μW	150 μW
Readout speed	240 Mbps	100 Mbps	100Mbps	240 Mbps
Readout mode	Serial/Parallel	Switched parallel	Serial/Parallel	Serial/Parallel Event driven

Matsuzawa Lab.