

<u>Ryo Minami</u>, Changyo Han, Kota Matsushita Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Outline

- Background
- About de-embedding
- Different de-embedding methods
 - Open-short method
 - Thru-only method
 - L-2L method
- Comparison of measured transmission line data
- Performance comparison of the PAs using different TL models
- Conclusion

Background

Gbps Wireless Communication

IEEE 802.15.3c · QPSK 3.5Gbps/ch · 16QAM 7.0Gbps/ch

Transmission Line

TL is used for considering the circuit by distributed "" constant.

PDK are only guaranteed to 20 GHz.

The accurate models for 60 GHz are required.

- Measurement data include parasitic components.
- Parasitic components are not ignorable at 60GHz.

→ These are required to be removed.

- Open-short method
- Thru-only method
- L-2L method

Open-short and thru-only method

IMS 2008.

6

L-2L De-embedding method

- Realize ideal thru pattern.
- Good isolation between probes.

[3] N. Li, et al, IEICE TRANS 2010.

 α :attenuation constant β :phase constant

Q:quality factor *Z*₀:characteristic impedance

Compare the parameter α, β, Q , and Z_0 per unit length.

These parameters must be the same regardless of the length of TLs.

Make the models of TL using measurement result of different de-embedding methods.

Evaluation, cont.

- common source topology
- MIM capacitor is used for decoupling
- 1.2V supply, 65nm CMOS

The evaluation is focused on the accuracy of transmission line models, so the same models are used for transistor, MIM capacitor, etc.

Open-short method cannot be used for modeling.

 Z_0 has 3 Ω difference at 60 GHz.

De-embedding error at 60GHz

This table shows the difference of transmission line parameters between different length of TLs.

	Open-short	Thru-only	L-2L
Δα[%]		20.4	2.6
Δβ[%]	32.7	5.7	0.1
ΔQ[%]		21	1.5
ΔΖ ₀ [%]	15.3	6.1	1.7

L-2L method can obtain the smallest error of transmission line parameters.

The effect of different de-embedding method 15

There are 1.5-dB gain error and 2.6-GHz frequency shift. Sim. error heavily depends on the de-embedding method.

Conclusion

16

- This presentation shows an evaluation of deembedding methods for mmW transceiver design.
- The L-2L de-embedding method is the most accurate for transmission-line characterization.
- The frequency shift with 4-stage PA using different de-embedding methods is 2.6 GHz which is over a channel of IEEE802.15.3c.
- The effect of different de-embedding method cannot be negligible.

