

A 60 GHz CMOS Power Amplifier Using Capacitive Cross-Coupling Neutralization with 16% PAE

Hiroki Asada, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan

Outline

- Back Ground
- Capacitive Cross-Coupling Neutralization
- 3-stage Power Amplifier
- Measurement Result
- Conclusion

Motivation

60GHz CMOS direct-conversion transceiver for multi-Gbps wireless communication

- IEEE 802.15.3c specification ■ 57.24GHz - 65.88GHz
- 2.16GHz/ch x 4channels
 QPSK → 3.5Gbps/ch
 16QAM → 7.0Gbps/ch

/Iatsuzawa & Okada Lab.

Challenges for 60GHz PA

 Parasitic Capacitances causes low reverse isolation.

Capacitive Cross Coupling[3] Pursuing Excellence OUT IN

- A cross-coupled capacitor between gate and drain of the opposite-side transistor works as negative capacitor.
 - The reverse isolation is improved.

2011/10/11 [3] W.L. Chan, *et al.*, ISSCC 2010

Small signal equivalent circuit

6

Matsuzawa & Okada Lab.

Stability

$$k = \frac{2\text{Re}[Y_{11}]\text{Re}[Y_{22}] - \text{Re}[Y_{12}Y_{21}]}{|Y_{12}Y_{21}|} = \frac{2 + \omega^2 (C_{GD} - C_X)^2 R_G R_D}{\omega |C_{GD} - C_X| R_G R_D \sqrt{\omega^2 (C_{GD} - C_X)^2 + g_m^2}}$$

Maximum Available Gain

MAG =
$$\left|\frac{Y_{21}}{Y_{12}}\right| (k - \sqrt{k^2 - 1}) = \frac{\sqrt{\omega^2 (C_{GD} - C_X)^2 + g_m^2}}{\omega |C_{GD} - C_X|} (k - \sqrt{k^2 - 1})$$

Simulation result

Pursuing Excellence

ΓΠΚ

- Stability Factor is improved across entire frequency.
- The maximum available gain is improved about 5dB at 60GHz

Influence of TL

 The longer TL, The smaller capacitance[fF] to cross-couple is needed.

2011/10/11

8

Transmission line

- Low loss(0.8dB/mm) •
- **Dummy metals are** ulletmanually placed.

ΓΟΚ

g

TEEH Pursuing Excellence

MIM Transmission Line

- De-coupling use
- Modeling accuracy
- Avoiding self-resonance of parallel-plate capacitors

ГП

MIM transmission line

50 Ω transmission line

2011/10/11 [4] T. Suzuki, et al., ISSCC 2008

Schematic of PA

- 3-stage differential power amplifier.
- The capacitive cross-coupling neutralization is used.
- The guided micro-strip line is used for matching network.
- The de-coupling is implemented as MIM TL.

Die photo

Core area: 1.0mmx0.6mm

12

ΤΟΚΥΟ ΤΕΓΗ

Pursuing Excellence

Measurement result

- Power Gain: 23.2dB
- P_{sat}: 14.6dBm
- P_{1dB}: 10.0dBm
- Power Consumption: 135mW (V_{dd}=1.2V)
- Peak PAE: 16.3%

2011/10/11

13

Pursuing Excellence

ΓΠ

Performance comparison

	Power Gain [dB]	P _{1dB} [dBm]	P _{sat} [dBm]	Peak PAE [%]	Power [mW]	V _{DD} [V]
ISSCC 2008[5]	5.5	9	12.3	8.8	-	1.0
ISSCC 2009[3]	16	2.5	11.5	11	43.5	1.0
ISSCC 2010[6]	20.6	18.2	19.9	14.2	-	1.2
ISSCC 2010[7]	19.2	14.1	17.7	11.1	480	1.0
ISSCC 2010[8]	14.3	11	16.6	4.9	732	1.2
ISSCC 2011[9]	20.3	15	18.6	15.1	-	1.0
This Work	23.2	10.0	14.6	16.3	135	1.2

[5] D. Chowdhury, *ISSCC*, 2008 [6] C. Y. Law, *ISSCC*, 2010 [7] J. Lai, *ISSCC*, 2010 [8] B. Martineau, *ISSCC*, 2010 [9] J.Chen, *ISSCC*, 2011

ΤΟΚ

Conclusion

- A 60GHz power amplifier using the capacitive cross-coupling neutralization with the low-loss transmission line is presented.
- The 3-stage differential power amplifier in 65nm CMOS achieves power gain of 23.2dB, output power at 1-dB compression point of 10.0dBm, saturated output power of 14.6dBm, peak PAE of 16.3% and power consumption of 135mW.

