A 60GHz 16Gb/s 16QAM Low-Power Direct-Conversion Transceiver Using Capacitive Cross-Coupling Neutralization in 65nm CMOS

<u>Hiroki Asada</u>, Keigo Bunsen, Kota Matsushita, Rui Murakami, Qinghong Bu, Ahmed Musa, Takahiro Sato, Tatsuya Yamaguchi, Ryo Minami, Toshihiko Ito, Kenichi Okada, Akira Matsuzawa

Tokyo Institute of Technology, Japan





# Outline

- Motivation
- Previous Work
- Challenges for 60GHz Transceiver
- Capacitive Cross-Coupling
  Neutralization
- Transceiver Design
- Measurement Results
- Conclusion

## Motivation

 60GHz CMOS direct-conversion transceiver for multi-Gbps wireless communication

IEEE 802.15.3c specification
 57.24GHz - 65.88GHz
 2.16GHz/ch x 4channels
 QPSK → 3.5Gbps/ch
 16QAM → 7.0Gbps/ch





## **Previous work 1**

- Direct-conversion transceiver by UCB[1]
  - 90° hybrid is used to generate I/Q signal
  - -4Gb/s for QPSK(Ch2)
  - 16QAM is unsupported



4

[1] C. Marcu, et al., ISSCC 2009, pp. 314-315

## **Previous work 2**

- Direct-conversion transceiver by Tokyo Tech[2]
  - Quadrature LO is used to generate I/Q signal
  - 11Gb/s for 16QAM(Ch2)
  - Not fully-balanced design  $\rightarrow$  large I/Q mismatch



5

### Gain Flatness at RF band



### **Parasitic Capacitance**



Parasitic Capacitances causes low reverse isolation and low gain.

# **Capacitive Cross-Coupling**



- A cross-coupled capacitor between gate and drain of the opposite-side transistor works as negative capacitor.
- MAG is improved about 5dB at 60GHz [3] W.L. Chan, *et al.*, ISSCC 2009

## **Direct-Conversion Architecture**

- Fully-balanced direct-conversion transceiver
- Capacitive cross-coupling neutralization
- Baseband LNA



# **Up-Conversion Mixer**

- Double-balanced Gilbert mixer
- Capacitive cross-coupling neutralization



# **Mixer Core Layout**

- Mixer core excluding intersection
  - LO line and RF line cross in matching network
- Mixer core including intersection
  - bad symmetrical property



Symmetrical core (Not Good)



Asymmetrical core (Good)

# **Mixer Core Layout**

- Symmetrical core needs crossed and complicated matching network.
- Asymmetrical core can realize simple matching network.



### **SRR** measurement

• Asymmetrical core shows higher Sideband Rejection Ratio(SRR) and low I/Q mismatch

|                   | SRR        | Amplitude<br>Error | Phase<br>Error |
|-------------------|------------|--------------------|----------------|
| Symmetrical core  | -24.5 [dB] | 0.04[dB]           | 6.8[deg]       |
| Asymmetrical core | -42.3[dB]  | 0.02[dB]           | 0.9[deg]       |

Simple layout of mixer can make I/Q mismatch negligible.

## **3-Stage PA**

- TL-based design for simulation accuracy
- Low-loss TL & MIM TL



### **Tx Measurement**



#### CG: 16dB P<sub>DC</sub>: 181mW

#### P<sub>sat</sub>: 6.5dBm(ch2) P<sub>1dB</sub>: 5.4dBm(ch2)

# **BB LNA**

- CCC amplifier with a source-follower buffer.
- To compensate Noise Figure



### **Down-Conversion Mixer**

- Parallel-line transformer
- Capacitive cross-coupling neutralization



# 4-Stage CS-CS LNA

- Wf=1µm (1<sup>st</sup> & 2<sup>nd</sup> stages) for noise opt.
- $W_{f}=2\mu m$  (3<sup>rd</sup> & 4<sup>th</sup> stages) for gain opt.
- Variable gain by adjusting bias voltages



### **Rx Measurement**



LO freq.: 60.48GHz (ch2) Lower cut-off freq.: 4MHz P<sub>DC</sub>: 138mW

## 60GHz Quadrature LO



- Wide frequency tuning range
- Phase noise improvement by injection locking

#### **Quadrature Injection-Locked Oscillator**



- Phase noise :-94.2dBc/Hz@1MHz-offset
- Free-running frequency: 55-63 GHz

## **Die Photo**



**4.2**mm

### Package and PCB



Face-up mount with a 270μm wire on a BGA package [5] R. Suga, *et al.*, IEEE T-MTT 2010 23

### **Measured Spectrum**

• 1.760Gs/s QPSK with 25% roll-off, 3dB back-off



## **Modulation Characteristics**

| Constellation                         | • •<br>9506 points | 19912 points | 13502 points | 42024 points |
|---------------------------------------|--------------------|--------------|--------------|--------------|
| Modulation                            | QPSK               | 16QAM        | QPSK         | 16QAM        |
| Data rate<br>(BER <10 <sup>-3</sup> ) | 3.52Gb/s           | 7.04Gb/s     | 10.0Gb/s     | 16.0Gb/s     |
| EVM<br>(with DFE)                     | -30.5dB            | -28.2dB      | -15.2dB      | -16.1dB      |

10Gb/s(QPSK) and 16Gb/s(16QAM) with wider-BW

## **Performance Comparison**

|               | Data rate<br>/ Modulation                 | EVM                        | Direct<br>conv. | Power                              |
|---------------|-------------------------------------------|----------------------------|-----------------|------------------------------------|
| U. Toronto[6] | 4Gb/s(BPSK)                               | N/A                        | Yes             | 374mW                              |
| UCB [1]       | 4Gb/s(QPSK)<br>7Gb/s(QPSK)<br>(loop-back) | N/A                        | Yes             | 170mW(Tx mode)<br>138mW(Rx mode)   |
| Tokyo Tech[2] | 8Gb/s(QPSK)<br>11Gb/s(16QAM)              | -17dB<br>(Tx→Rx)           | Yes             | 186mW(Tx mode)<br>106mW(Rx mode)   |
| CEA-LETI[7]   | 3.8Gb/s(16QAM)                            | -20.7dB(Tx)<br>-19.2dB(Rx) | No              | 1357mW(Tx mode)<br>454mW(Rx mode)  |
| SiBeam[8]     | 3.8Gb/s(16QAM)                            | -19.2dB<br>(Tx→Rx)         | No              | 1820mW(Tx mode)<br>1250mW(Rx mode) |
| This work     | 10Gb/s(QPSK)<br>16Gb/s(16QAM)             | -28.2dB<br>(Tx→Rx)         | Yes             | 181mW(Tx mode)<br>138mW(Rx mode)   |

[6] A. Tomkins, *et al.*, *JSSC*, vol.44, no.8, pp.2085-2099, Aug. 2009 [7] A. Siligaris, *et al.*, *ISSCC 2011.*, pp. 162-163 [8] S. Emami, *et al.*, *ISSCC 2011*, pp. 164-165 **26** 

# **Summary and Conclusion**

- A 60GHz 16Gb/s 16QAM Low-Power Direct-Conversion Transceiver.
- Consideration of mixer layout.
- Capacitive Cross-Coupling Neutralization.
- Full-rate 16QAM/8PSK/QPSK/BPSK for IEEE802.15.3c
- Ch1(57.24-59.40GHz) and Ch2(59.40-61.56GHz)
- Standard 65nm CMOS
- Tx (181mW), Rx (138mW), and PLL (66mW)