A 20GHz ILFD with Locking Range of 31% for Divide-by-4 and 15% for Divide-by-8 Using Progressive Mixing

<u>Ahmed Musa</u>, Kenichi Okada, Akira Matsuzawa *Tokyo Institute of Technology, Japan*

- Motivation
- Conventional ILFD
- Proposed ILFD
- Measurement Results
- Performance Comparison
- Conclusion

- Motivation
- Conventional ILFD
- Proposed ILFD
- Measurement Results
- Performance Comparison
- Conclusion

High Frequency PLLs

- High Frequency PLLs are becoming more popular
- Static prescalers consume considerable power
 - 40% of PLL total power consumption [1].

[1] A. Musa et. al, JSSC 2011

High Speed Frequency Dividers

- Static Frequency Dividers:
 - Operate up to several tens of GHz
 - Wide locking range
 - Consume considerable current to operate
 - Conventionally only divides by 2
- Injection Locked Frequency Dividers (ILFDs)
 - Operate higher than 100GHz
 - Limited locking range
 - Low power consumption
 - Can divide by higher than 2

- Motivation
- Conventional ILFD
- Proposed ILFD
- Measurement Results
- Performance Comparison
- Conclusion

Conventional ILFD (Direct)

- Input signal is divided directly by N:
 - Low power consumption
 - Narrow Locking range
 - False Locking

Conventional ILFD

Red arrows indicate <u>desired</u> injection **Blue** arrows indicate <u>harmful</u> injection

Conventional ILFD (Cascade)

- Cascading two ÷ 2 ILFDs to achieve ÷ 4:
 - Wider locking range
 - Locking range mismatch
 - 15%@÷2 → 2.4%@÷4 [2]
 - Independent tuning

Lock range mismatch

Divide by 4 in multistep by cascading 2 divide-by-2 circuits

[2] P. Mayr et. al, ISSCC 2007

ILFD Topology Summary

	Direct	Cascade
Lock range higher than 2	Narrow	Wide
False locking	Yes	No
Locking range mismatch	No	Yes
Power consumption	Low	High

A topology that combines the advantages of both is needed

- Motivation
- Conventional ILFD
- Proposed ILFD
- Measurement Results
- Performance Comparison
- Conclusion

Proposed ILFD Configuration

- One oscillator
 - Direct division power consumption
- Reuse fundamental higher harmonics
 - Cascaded wider locking range
- Vertical configuration
- Extendable

Proposed ILFD Configuration

• For a divide-by-4 Configuration:

Proposed ÷ 4 ILFD Timing Waveform

Proposed ÷ 4 ILFD Schematic

Schematic of the Proposed Progressive Mixing ILFD

Proposed ÷4 ILFD Model

- Multistep conversion
- Strongest harmonics in mixing
- Intermediate points can be used to inject points for lower division ratios

Proposed ILFD Topology Summary

- Inherent cascade topology for wide locking range.
- One oscillator is used for low power consumption.
- Strongest harmonic is used at each step to avoid false locking.
- Higher harmonics of the fundamental are used which avoids locking range mismatch.

- Motivation
- Conventional ILFD
- Proposed ILFD
- Measurement Results
- Performance Comparison
- Conclusion

Sensitivity Curve ÷4 (Measured)

31.4% Locking range@20GHz

Locking Range Vs Tuning (Measured)

42.7% Maximum Locking Range

Sensitivity Curve ÷ 2 (Measured)

92.1% Maximum Locking range

Performance Summary ÷ 4

	Measurement		
Process	65nm CMOS		
Supply	1.2V		
Free-run Frequency Range	2 ~ 8GHz		
Lock range (÷ 4)	31.5 ~ 42.7%		
Lock range (÷ 2)	53.7 ~ 92.6%		
Power Consumption	3.9mW		

Proposed ÷8 ILFD

Three step divide-by-8 model

Sensitivity Curve ÷8 (Measured)

14.6% Locking range@20GHz

Locking Range Vs Tuning (Measured)

Sensitivity Curve ÷4 (Measured)

31.8% Maximum Locking range

Performance Summary ÷8

	Measurement		
Process	65nm CMOS		
Supply	1.2V		
Free-run Frequency Range	1.6 ~ 5.3GHz		
Lock range (÷ 8)	14.6 ~ 17.3%		
Lock range (÷ 4)	25.5 ~ 31.8%		
Power Consumption	7.1mW		

Chip Micropraph

- Chip Area:
 - ÷ 4
 - 750µm x 810µm
 - Divider
 - 52µm X 48µm
 - ÷ 8
 - 750µm x 810µm
 - Divider
 - –66µm x 86µm

- Motivation
- Conventional ILFD
- Proposed ILFD
- Measurement Results
- Performance Comparison
- Conclusion

Performance Comparison

		TEG 1	TEG 2	[3]	[2]	[5]	[6]
Division Ratio(s)		2, 4	4, 8	2, 4	2, 4	4	2, 4, 6, 8
Power	(mW)	3.9	7.1	3.0	12.4	2.8	6.8
Lock Range (GHz)	/2	11.6 (92%)	-	23 (34%)	12.1 (15%)	-	2 (56%)
	/4	7.9 (31%)	4 (32%)	6.5 (7.3%)	1.9 (2.4%)	1.6 (2.3%)	1.6 (22%)
	/8	-	3.8 (15%)	-	-	-	0.25 (1.7%)

[3] C.C. Chen et. al, MTT 2009 [2] P. Mayr et. al, ISSCC 2007 [5] K. Yamamoto et. al, ISSCC 2006 [6] M. Acar et. al, RFIC 2004

- Motivation
- Conventional ILFD
- Proposed ILFD
- Measurement Results
- Performance Comparison
- Conclusion

Conclusion

- A new injection locked frequency divider (ILFD) is proposed.
- The divider uses progressive mixing (multistep mixing) to allow injection at higher harmonics of the fundamental.
- Uses separate inputs for different division ratios to avoid false locking
- The widest locking range has been achieved especially for higher division ratios.
 - ÷2 (93%)
 - ÷4 (43%)
 - ÷8 (17%)